S&T Portfolio Maturity & Performance Analysis: The Concept of Critical Research Elements (CREs)

NDIA:
National Defense Industrial Association
12th Annual Systems Engineering Conference

Presented by:
Has Patel
Infologic, Inc.
has.patel@infologic.com
(888) 325 0500 Ext. 100
A Critical Need identified by the highest office in the USA

A Strategy for American Innovation:

"History should be our guide. The United States led the world’s economies in the 20th century because we led the world in innovation. Today, the competition is keener; the challenge is tougher; and that is why innovation is more important than ever. It is the key to good, new jobs for the 21st century. That’s how we will ensure a high quality of life for this generation and future generations. With these investments, we’re planting the seeds of progress for our country, and good-paying, private-sector jobs for the American people."

- President Barack Obama, August 5, 2009.
US Innovation Agenda: Salient Points

Innovation Funding at an Unprecedented Scale !!

A Strategy for American Innovation:
Driving toward Sustainable Growth and Quality Jobs

- Double R&D budget for key R&D agencies (inc. NSF)
- Invest 3% of GDP in R&D (Public and Private sectors)
- Use innovation to improve government programs at all levels of government
- Harness science and technology to address the "Grand Challenges" of the 21st century.
- A number of other directions (increase in Graduate Research Fellowships, Academic funding, etc ...)
Innovation Management Needs Recognized

Office of the President: A Strategy for American Innovation: Driving toward Sustainable Growth and Quality Jobs

Private Organizations: Recent Gartner Group, Deloitte and IBM studies have said Innovation is the “top of the mind” for corporate and public CEOs. Recent IBM study, titled: “Expanding the Innovation Horizon” concluded that:

- Business Model Innovation Matters: Business process innovation
- External Collaboration is Indispensable: Collaboration beyond the walls
- Innovation requires Orchestration from the top: Strategic commitments, teams, rewards and technology/process integration

Department of Defense: DoD Force Transformation:

- Support the Joint Warfighting Capability of the DoD
- Enable Rapid Access to Information for Strategic Decisions
- Reduce the Cost of Defense Business Operations
- Improve Financial Stewardship to the American People
Strategic Issues: Innovation Management is Art

Call to Action: An Innovation Management model which incorporates rigor, metrics and discipline

- Innovation should be held as same measurement rigor as other core functions.
- Innovation Opportunity Is About How the Process is Managed – Not Just Ideas and Creativity
- Improving Innovation is not Beyond Leaders’ Control – It must be measured and controlled
- Key Innovation Mistakes: Not Emphasizing Speed, and Not Managing with Discipline and Aggressiveness

DoD Report to the Congress on Technology Transition, July 2007. Conclusion – Disconnect between S&T and Acquisition Programs

Innovation Management Model

Innovation = f (Product, Process, Execution)

- **Product:** Technology-heavy (e.g: Airplane, iPod) OR Service-heavy (e.g: Starbucks System, eBay)
- **Process:** Any critical business process to ensure the success of product (e.g: iTune for iPod, Marketing and Supply Chain Management)
- **Execution:** Management strategies to ensure that Innovation works! (WILL to ACT !!)

To measure the success of Innovation in an organization, maturity analyses should be conducted for all THREE components: Product, Process and Execution
Innovation Management Model: Components

Innovation Management Components

- Voice of the Customer
- Integration
- Management Strategies
- Enterprise Performance Management (EPM)
- Enterprise Performance Management (EPM)
- Radical Innovation
- Radical Innovation
- Evolutionary Innovation
- Evolutionary Innovation
- Incremental Development
- Incremental Development
- Spiral Development
- Spiral Development
- Voice of the Knowledge Worker
- Methodologies & Tools
- Voice of the User
- Product Model
- Process Model
Innovation Management is a Process and should be matured using the CMMI methodology

LEVEL 0: Incomplete
Not performed; Partially performed

LEVEL 1: Initial
Poorly performed; Reactive

LEVEL 2: Managed
Characterized as a Project & Reactive

LEVEL 3: Defined
Proactive; Organization wide

LEVEL 4: Quantitatively Managed
Measured & Controlled

LEVEL 5: Optimizing
Focus on Process Improvement

Innovation Management Model

Innovation Management is a Process and should be matured using the CMMI methodology.

LEVEL 0: Incomplete
Not performed; Partially performed

LEVEL 1: Initial
Poorly performed; Reactive

LEVEL 2: Managed
Characterized as a Project & Reactive

LEVEL 3: Defined
Proactive; Organization wide

LEVEL 4: Quantitatively Managed
Measured & Controlled

LEVEL 5: Optimizing
Focus on Process Improvement

Innovation Management model supported by consistent processes across the organization; Executive Management support; Matrices used.

A form of Innovation management model implemented; Product, Process and Execution efforts are coordinated.

Approaches to Innovation recognized; Applied to Key projects; Usage consistency and collaboration among projects.

Innovation opportunities recognized; Localized inconsistent Innovation experience.

Innovation not on the radar screen; No strong awareness of Innovation opportunities.

Full Innovation Management model is implemented; Innovation Management is part of organization strategies; Creating and managing IP is key component of all key initiatives.
An Innovation Model can be applied to varied functions of an Organization

- **Private Organizations**
 - Organization wide Innovation maturity – measure and control the whole organization’s current level of maturity in adopting Innovation
 - Product specific – measure and control Innovation in a given product (e.g: Idea to market for a given widget.)
 - Process specific - measure and control Innovation in a given Process (e.g: Human Resource Management)

- **Public Organizations (DoD)**
 - Program Specific – measure the maturity of technologies and processes for a given Program through its life cycle (e.g: FCS)
 - **Sector Specific – measure the Innovation maturity of an organization (e.g: R&D and Technology Management)**
 - Initiative specific – measure the Innovation maturity for an Initiative (e.g: eGov)
Challenges & Issues: DoD R&D and Technology Management

Valley of Death Phenomena !!

DoD Report to the Congress on Technology Transition, July 2007

- **Conclusion** – Disconnect between S&T and Acquisition Programs
- **Recommendations** – (1) Improve Technology Push, (2) Improve Technology Pull, (3) Remove technical, cultural and business barriers to integrate new suppliers and technologies into defense system architectures, and (4) Focused governance and oversight at the Enterprise level

GAO Report on Assessments of Select Weapon Programs, March 2008

- **Author** - Gene L. Dodaro, Acting Comptroller General of the United States
- **Conclusion** – Immature technology causes cost and time escalation (other – software development difficulties, contractor usage, staff turnover)
- **Recommendations** – Employ Knowledge-based approach (Technology Maturity, Design Maturity and Production Maturity)
Valley of Death?

Disconnect between S&T and Acquisition Programs

S&T Portfolio

PUSH

Technology Needs:
Programs of Record

PULL

Wasted R&D Efforts
Immature technologies
Unmet Program technology needs
Disconnect between S&T and Acquisition Programs
Valley of Death: Why?

The Issues to be resolved and Best Practices to be implemented

S&T and Program Management Issues
Enterprise Guidelines and Issues
Lack of Industry Best Practices
Critical Research Elements (CREs)

Linking IP, S&T Portfolio and Product Lifecycle Management

Technology Strategies, Needs, Threats & Opportunities Analysis

DARPA & Services R&D

Federally Funded R&D (FFRDEC, SBIR)

Academic, Industrial & International R&D

Research Transition Agreements

Research Transfer Agreements

CREs

Critical Research Elements

fCRE – Long Term CRE to meet future Years Warfighter needs

tCRE – Short Term CRE to meet today’s Warfighter needs

CTEs

Critical Technology Elements

(Milestone A)

New Program A

New Program X

Existing Program A

Existing Program X

Multi-Dimension Maturity Analysis: CREs (to be developed) and CTEs (TRLs & MRLs)
What are CREs?

Linking CREs to International Standards and CTEs

<table>
<thead>
<tr>
<th>Critical Research Elements (CREs)</th>
<th>Critical Technology Elements (CTEs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposition: A CRE is a manageable and/or patentable component of a S&T Program. A Program may be composed of one or more CRE. The following definitions apply:
 (a) Manageable: The Project Manager has determined that this research element represents one of the major areas of the S&T Program, and the program can not succeed without tracking its progress through the life cycle of the program.
 (b) Patentable: World Intellectual Property Organization (WIPO), an agency of the United Nations Definition: “… A patent is an exclusive right granted for an invention, which is a product or a process that provides, in general, a new way of doing something, or offers a new technical solution to a problem. In order to be patentable, the invention must fulfill certain conditions. An invention must, in general, fulfill the following conditions to be protected by a patent - practical use; novelty, new characteristic, inventive step… “</td>
<td>DOD TRA Desk book Definition: “A technology element is “critical” if the system being acquired depends on this technology element to meet operational requirements (with acceptable development, cost, and schedule and with acceptable production and operation costs) and if the technology element or its application is either new or novel. Said another way, an element that is new or novel or is being used in a new or novel way is critical if it is necessary to achieve the successful development of a system, its acquisition, or its operational utility.”</td>
</tr>
</tbody>
</table>
Comparing CREs to CTEs

<table>
<thead>
<tr>
<th>Critical Research Elements (CREs)</th>
<th>Critical Technology Elements (CTEs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRE has one-to-one or one-to-many relationship with a CTE</td>
<td>A CTE is derived from one or more CRE</td>
</tr>
<tr>
<td>Frontend of Innovation</td>
<td>Backend of Innovation</td>
</tr>
<tr>
<td>Measurement Indices: “Performance & Maturity” (to be developed)</td>
<td>Measurement Indices: TRA/TRLs (evolving to SMA)</td>
</tr>
<tr>
<td>Independent from the Acquisition Programs and managed by the S&T Community</td>
<td>Related to Acquisition Programs and managed by the Acquisition Community</td>
</tr>
</tbody>
</table>
CREs: What are the real questions?

Exploring CREs

- How to identify and define the CRE?
- Which criteria should be used to measure the performance and maturity of CRE?
- How is CRE related to the innovation metrics used by Industry?
- As SMA is conducted on CTEs, how does SMA relate to CREs?
- How will the CRE link with the
 - CTE, and
 - the DOD Acquisition Management Framework?
CREs: What do we know?

- Industry metrics are part of Stage/Gate Process to manage product lifecycle

- Industry Metrics should be used as a guideline ONLY to develop DoD S&T Program management metrics
CREs: What do we need to know?

Linking IP, S&T Portfolio and Product Lifecycle Management

- Industry Metrics are based on the commercial management criteria, such as profit, patents generated and new products introduced (discussed in previous slide).

- For the DOD community, the management criteria are warfare superiority, and delivering capabilities to the war fighters within the planned cost, schedule, risk/vulnerability, intelligence collection/dissemination accuracy, detection, assessment of preparedness, maintenance of situation awareness, and performance outcomes. Questions:

 - Are there any other management criteria (in addition to the above referenced criteria that should be used to develop CREs?
 - What are the desired or optimized research management practices?
 - What are the gaps between the current practices and the optimized practices?
 - What are the main challenges encountered in measuring the S&T program performance?
 - Which tools should be used?
 - How are the project selected for S&T portfolio?
Linking IP, S&T Portfolio and Product Lifecycle Management

- Develop a list of research management criteria after analyzing DoD and commercial best practices for S&T and Acquisition program management.
- Prepare and conduct a market survey.
- Develop a list of research performance measurement and maturity criteria and qualifications.
- Research and analyze the differences between the CRE and CTE.
- Develop and analyze the parameters which are essential to develop an effective communication link between the S&T and Acquisition Programs.
- Develop a link between the CRE, CTE and the Acquisition Management Framework, based on a Knowledge-based Gate Process.
- Develop a link between the OMB’s Program Assessment Rating Tool (PART) and the CRE concept.
- Analyze and verify the components of the proposed multi-dimension maturity model.
- Develop a prototype software tool, using Government-off-the-shelves (GOTS) or Commercial Off-the Shelves (COTS) products which will help the Defense community to link CRE to CTE.
- Develop a prototype management dash board, based on a COTS product, which will show performance and maturity health of a S&T Program using the CRE methodology and Multi-Dimension Maturity model.
Conclusions

CREs – A part of the solution

- Innovation is a top National priority; However, Innovation Management is an ART and should be converted to a SCIENCE by developing concepts, methodologies and tools.

- Department of Defense Innovation Management: Valley of Death is caused by disconnect between S&T and Acquisition Programs.

- Current DOD Community discussions on the Valley of Death mainly address the funding mechanism…. however, there is a need to develop a comprehensive solution (new or improved methodologies, processes and tools) by analyzing:
 - S&T and Program Management Issues
 - Enterprise Guidelines and Issues
 - Industry Best Practices

- CREs – One of the proposed methodologies
 - Proposed a CRE definition
 - Suggested links to CTEs
S&T Portfolio Maturity & Performance Analysis: The Concept of Critical Research Elements (CREs)

NDIA
12th Annual Systems Engineering Conference

Any Questions?

Has Patel
Infologic, Inc.
has.patel@infologic.com
(888) 325 0500 Ext. 100