Achieving Acquisition Excellence via Improving the Systems-Engineering Workforce

Dr. Kenneth E. Nidiffer
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

October 29, 2009
Overview

• Is your organization working towards achieving acquisition excellence?
 – The application of systems-engineering to improve the workforce may be part of the answer!
• What are the rate-limiting variables/drivers that limit success?
• How can the CMMI® - ACQ model be used?
Increasing # of Procurements & Complex Systems Coupled With Huge Decrease In Acquisition Workforce
Recapture Acquisition Excellence: Revitalize The Acquisition Workforce

Problem

- Acquisition capability has slowly atrophied
- Organic Workforce reductions - 23% since 1999
 - Force shaping, reduced training, retirements of critical cost estimators, price analysts, experienced system engineers, contracting officers

Initiatives

- Recapitalize the Acquisition Corps/Training
- OSD Funding Increased Numbers and Training of Organic Acquisition Personnel

It Is All About the Acquisition Workforce
Project Purpose

Use a systems engineering approach to assess acquisition training and organizational training processes for improving acquisition excellence

Experience

Workforce Attributes – Training Easiest to Manage

Training Ability
Summary of Systems Engineering Drivers

External Forces
• Increasing size of untrained defense acquisition workforce
• Retiring of experienced and capable workforce

Technological
• Accelerating technological changes makes systems specific acquisition training difficult at best
• Identifying future competencies to ensure most relevant training content

Human Capital
• Changing workforce demographics requiring newer methods of training and management

Client Business Environment
• Achieving acquisition excellence in a fiscally constrained environment
External Forces

Rebalanced Workforce

AT&L Civilians – Risk of Losing

Level 4 - Systems Engineer (Expert) (minimum 6 years of SE experience)

Level 3 - Systems Engineer (Expert) (minimum 6 years of SE experience)

Level 2 - Acquisition Engineer (Journeyman) (minimum 2 years of experience)

Level 1 - Acquisition Engineer (Entry) (minimum 1 year of experience)

Bimodal Demographics (Space Industry)

Source: DAU

Professional Growth vs. Time

Source: LMSC

Source: DAU

SPRDE/Systems Engineering Career Field

Source: DAU

External Forces

Rebalanced Workforce

AT&L Civilians – Risk of Losing

Level 4 - Systems Engineer (Expert) (minimum 6 years of SE experience)

Level 3 - Systems Engineer (Expert) (minimum 6 years of SE experience)

Level 2 - Acquisition Engineer (Journeyman) (minimum 2 years of experience)

Level 1 - Acquisition Engineer (Entry) (minimum 1 year of experience)

Bimodal Demographics (Space Industry)

Source: DAU

Professional Growth vs. Time

Source: LMSC

Source: DAU

SPRDE/Systems Engineering Career Field

Source: DAU
Technological: Acceleration of Innovation in the 21st Century - Facilitating Our Ability to Build Move Complex Systems

The Amount of New Technological Innovation is Doubling Every Two Years - Requires More Upfront SE/SW Engineering to Leverage Trends
Technological: Augustine’s Law Holding - Growth of Software is an Order of Magnitude Every 10 Years

In The Beginning

1960’s
F-4A
1000 LOC

1970’s
F-15A
50,000 LOC

1980’s
F-16C
300K LOC

1990’s
F-22
1.7M LOC

2000+
F-35
>6M LOC
Technological: Moore's Law Holding - The Number of Transistors That Can be Placed on an Integrated Circuit is Doubling Approximately Every Two Years
Technological: Increasing Rate of Adoption

- Automobile (1926) = 56 years
- Telephone (1876) = 36 years
- Television (1926) = 26 years
- Cell Phone (1983) = 14 years
- PC (1975)
- VCR (1952)
- Microwave (1953)
- Radio (1905)
- Electricity (1873)

No. of Years Since Invention

Source: Rich Kaplan, Microsoft
Human Capital: Refocusing University Curriculums -
Alignment of Software Systems Engineering

OSD Initiatives: Graduate Software Engineering Reference Curriculum (GSwERC)
& Body of Knowledge and Curriculum to Advance Systems Engineering (BKCASE)

SW = Software
Human Capital: Using Core Competencies

Accurate identification of required competencies are important to support the curriculum review and development effort needed to ensure the best and most relevant training.

<table>
<thead>
<tr>
<th>Competency Family</th>
<th>Software Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge</td>
<td>Application domain</td>
</tr>
<tr>
<td></td>
<td>Procedural design</td>
</tr>
<tr>
<td></td>
<td>Cobol & Assembler</td>
</tr>
<tr>
<td></td>
<td>Numerical analysis</td>
</tr>
<tr>
<td>Skills</td>
<td>Requirements analysis</td>
</tr>
<tr>
<td></td>
<td>System design</td>
</tr>
<tr>
<td></td>
<td>Project management</td>
</tr>
<tr>
<td></td>
<td>Debugging</td>
</tr>
<tr>
<td>Process Abilities</td>
<td>Integrated team design</td>
</tr>
<tr>
<td></td>
<td>Fagan inspections</td>
</tr>
<tr>
<td></td>
<td>Test procedures</td>
</tr>
<tr>
<td></td>
<td>Change control</td>
</tr>
</tbody>
</table>

Competency Family: Software Engineering

Current Resource Profile (initial inventory)

<table>
<thead>
<tr>
<th>Workforce Competency</th>
<th>Staffing by Capacity Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>Software Engineer</td>
<td>17</td>
</tr>
<tr>
<td>User Training</td>
<td>2</td>
</tr>
</tbody>
</table>

Current Resource Needs (one-year cycle)

<table>
<thead>
<tr>
<th>Workforce Competency</th>
<th>Current Staffing Level Needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>Software Engineer</td>
<td>23</td>
</tr>
<tr>
<td>User Training</td>
<td>4</td>
</tr>
</tbody>
</table>

Strategic Workforce Needs (2-5 year)

<table>
<thead>
<tr>
<th>Workforce Competency</th>
<th>2010 Staffing Level Needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>Software Engineer</td>
<td>31</td>
</tr>
<tr>
<td>User Training</td>
<td>4</td>
</tr>
</tbody>
</table>

Source – SEI 2009
Human Capital: Changing Demographics

Demographics of workforce are changing and different views may emerge with four generations to consider.

Generation Y professionals entering workforce will likely necessitate non-traditional training techniques, such as virtual approaches.

- **Baby Boomers** (1946-1964): Workaholic, Questions authority, Works efficiently, Competitive, Little work/life balance
- **Silent Generation** (1928-1945): Hard worker, Respects authority, Work is obligation, Formal communicator, Work/family separation
Client Business Environment: Increasingly Complex

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Commercial Software Products</th>
<th>Information Technology & Internet Financial Services</th>
<th>Government Aerospace Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market</td>
<td>Commercial</td>
<td>Information technology & internet</td>
<td>Government</td>
</tr>
<tr>
<td>Industry</td>
<td>Software</td>
<td>Financial</td>
<td>Aerospace</td>
</tr>
<tr>
<td>Packaging</td>
<td>Products</td>
<td>Services</td>
<td>Systems</td>
</tr>
<tr>
<td>Primary Output</td>
<td>Software</td>
<td>Integrated system engr & HW & SW & network</td>
<td>Integrated system engr & HW & SW & network</td>
</tr>
<tr>
<td>Purpose</td>
<td>User empowerment: effectiveness, efficiency, creativity</td>
<td>Organization/business operations</td>
<td>Mission/science capabilities</td>
</tr>
<tr>
<td>Project Duration</td>
<td>1-36 months</td>
<td>1-18 months</td>
<td>6 months - 10 years</td>
</tr>
<tr>
<td>Team Size</td>
<td>1-1000’s</td>
<td>1-1000’s</td>
<td>10’s-1000’s</td>
</tr>
<tr>
<td>Ratio of Custom to COTS/Reuse</td>
<td>Software: Low-high</td>
<td>Business logic: High Others: Low</td>
<td>All: High</td>
</tr>
<tr>
<td>Agreement</td>
<td>License</td>
<td>Service level agreement</td>
<td>Contract</td>
</tr>
<tr>
<td>Customer</td>
<td>External</td>
<td>Internal and external</td>
<td>External</td>
</tr>
<tr>
<td># Customers</td>
<td>100’s-1,000,000’s</td>
<td>1-1,000,000’s</td>
<td>1</td>
</tr>
<tr>
<td>Focus</td>
<td>Features, Time-to-market, Ship it</td>
<td>User experience, Workflow cycletime, Uptime</td>
<td>Reliability, Milestones, Interdependencies</td>
</tr>
</tbody>
</table>

Source – Northrop Grumman
2005 study confirmed*:
- In advanced knowledge-based organizations, management’s desire for the flow of knowledge is greater than the desire to control boundaries
- Unlike the matrix organization, there is less impact on the dynamics of formal power and control

* Using Communities of Practice to Drive Organizational Performance and Innovation, 2005, APQ study

Ref: Jim Smith, (703) 908-8221, jds@sei.cmu.edu

From “Science and Technology to Support FORCEnet,” Raytheon TD-06-008. Used by permission.
Systems Engineering Approach

Selected based on
- amount/type of data to be reviewed
- availability of a reference model
- requirements, logical and physical loops
- iteration and recurrision activities
- access to key stakeholders

Phase 1
Identify/Collect Data

- Identify Training Courses
- Identify/Select Reference Model
- Identify Org. Training Process
- Identify Stakeholders
- Review Legacy/Current Efforts

Phase 2
Perform Gap Analysis

- Survey
- CMML-ACQ Reference Model
- Training Class Coverage Gaps
- Organizational Process Gaps
- Framework Space Gaps

Phase 3
Formulate/Codify Findings

- Findings, Impacts, Recommendations
- Write Draft Report

Phase 4
Develop/Deliver Results

- Write Final Report
- Communicate Results and Collect Feedback
Project Objectives

During assessment Phase 1 project objectives were formulated in terms of five questions:

• Do coverage gaps exist in the training of acquisition best practices?
• Do gaps exist in acquisition training on the unique aspects of the client’s system acquisitions?
• Do gaps exist in the training of the client’s acquisition lifecycle framework and processes?
• Do best-practice gaps exist in the client’s organizational training processes?
• Do gaps exist in identifying training requirements for satisfying the acquisition workforce core competencies?
Reference Model

Evaluated client’s acquisition training program components using Capability Maturity Model Integration® for Acquisition (CMMI® -ACQ) as reference model
Assessment Framework: CMMI®-ACQ

Operational Need

Focus on Acquisition Best Practices (Acquirer)

Development (Developer)

Plan | Design | Develop | Integrate and Test | Deliver
Representative Results: Question 1

Question 1: Do Coverage Gaps Exist in the Training of Acquisition Best Practices?

Findings:
- Detailed findings awaiting client approval

Impacts:
- Missing opportunities to
 - attract more students
 - provide training on the most relevant issues
 - effectively plan
 - save resources
 - provide a richer variety of courses
 - continuously improve training processes

Recommendations:
- Conducting a review to assess use of web-based and non-traditional acquisition training

Considerations:
- **Consider**: Leveraging of efforts by DAU, commercial industry and academia
 - Conducting a review of best practices for e-learning
- **Consider**: Using DAU’s Acquisition Best Practices
 - Making a better use of repository information
Lessons Learned

- Tsunami-like impacts on new acquisition training requirements
 - Rapid, large-scale disturbance of current training needs envisioned
 - Forces will include technological, human capital, external and government needs
- Training departments have incorporated best acquisition practices into their training courses; however
 - Mapping of core competencies to training courses needs to be done
 - Training architectures needed
- Developers of organizational training processes could benefit from the application of systems engineering

Tsunami

Images of the Ocean Floor
Wrap Up
Contact Information

Dr. Kenneth E. Nidiffer, Director of Strategic Plans for Government Programs

Software Engineering Institute, Carnegie Mellon University
Office: +1 703-908-1117
Fax: +1 703-908-9317
Email: nidiffer@sei.cmu.edu