

Ten Things You Should Know -What Prime's Value in Their Integrated Supply Chains

Presented to NDIA National Small Business Conference by Dr. Kenneth W. Sullivan, P.E. June 2, 2009

Areas of Focus

- Supply Chain Analysis
 - Multi-Tiered, Multi-Channel Supply Chains
 - Enterprise Value Stream Mapping
 - Data Mining Throughout Supply Chain
- Supply Chain Design and Optimization
 - Inventory and Network Optimization
 - Enterprise Approach to Solution
 - Development of Simulation Models
- Product Life Cycle Management
 - System Definition: Object BOM and Information BOM
 - System Design: Publish and Subscribe Network
 - Implementation

Attributes

- Experiences in both public and private sector
 - "Best practices" implementation
 - Federal Government
 - US Army
 - US Air Force
 - Department of Transportation
 - NASA-MSFC
- Perceived as "non-competitive" partner
- Flexible and experienced workforce
 - Full-time, non-academic staff
 - Government and private sector experience prior to joining UAH
 - Interface with academic staff (subject matter experts)
- Customized training and implementation
 - Tailored for specific customer needs
 - On-site training and implementation

Primary Customers

- AMCOM Office for Continuous Improvement
 - Supply chain analysis for Chinook, Apache and Kiowa
 - Identification of critical paths
- AMCOM Command Analysis Directorate
 - Supply chain modeling for Chinook blades and various aviation assembly platforms
 - Determination of optimum inventories to support readiness requirement
- Army Materiel Command (AMC)
- AMRDEC Supply Chain Integrated Product Team
- NASA Ares Program Upper Stage Supply Chain Analysis

UAHuntsville

Strategic Partners – The Company We Keep:

- MIT Forum for Supply Chain Innovation
- Lean Advancement Initiative (LAI) at MIT
- National Defense Industry Association (NDIA)
- National Council for Advanced Manufacturing (NACFAM)
- Supply Chain Council (SCOR)

Center for Management & Econom Sole where is this guy coming from?"

- NASA MSFC (7 years)
 - Materials and Processing Laboratory
 - Chief Engineer/Project Office
- Private Sector (8 ¹/₂ years)
 - Precision Machine Shop (primarily aerospace)
 - High volume commercial production
- University of Alabama in Huntsville (8 ¹/₂ years)
 - Contract support to US Army (AMCOM) for Industrial Base Branch (Team Leader/Manager)
 - Lean implementation and training at government and private sector corporations
 - Team lead for UAH AMCOM supply chain analysis team
 - Multi-tired evaluation of the Army Aviation supply chain
 - Team visited over 50 suppliers

Today's Reality

- Strategic Trends Shaping Industry and Government
 - Growing Specialization and Focus on Core Competencies;
 - Outsourcing in the Search for Lower Costs;
 - Continuing Movement Towards Globalization
- Implications
 - Manufacturers and Prime Contractors Have Become Integrators, Assemblers & Business Managers;
 - Hundreds of Companies and Organizations Now Work Together to Deliver Value to the Customer;
 - Critical Need for Integrated Management, Visibility, Coordination and Collaboration

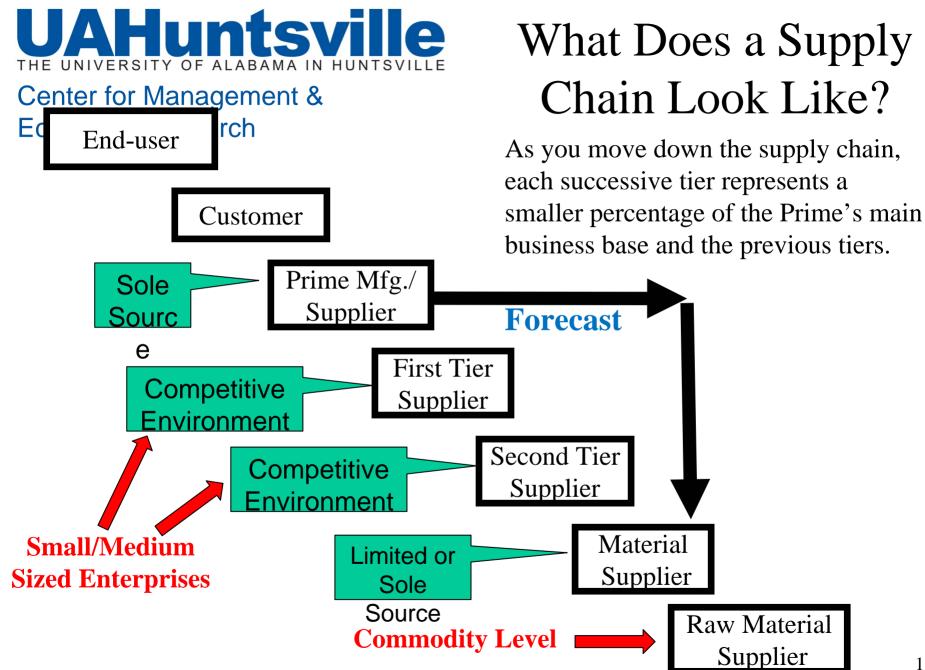
Center for Management &

Economic Research

The Top 10 Things to Know

- 1. Your critical position in the big picture of delivering value to the final customer
- 2. Importance of communication and the role of supply chain roundtables
- 3. Supply chain management and metrics
- 4. Use of collaboration tools for forecasting and planning.
- 5. Lean Implementation in both manufacturing and business processes -- both within your organization and at the interfaces with other companies
- 6. Innovative strategies for increasing value added
- 7. Understanding requirements and challenging status quo
- 8. New and emerging contract structures
- 9. Economic, industrial and demographic trends
- 10. Supply Chain innovations such as incentivized work in process

1. Your critical position in the big picture of delivering value to the final customer


Center for Management & Economic Research What is a Supply Chain?

"...every effort involved in producing and delivering a final product or service, from **the supplier's supplier to the customer's customer.**"

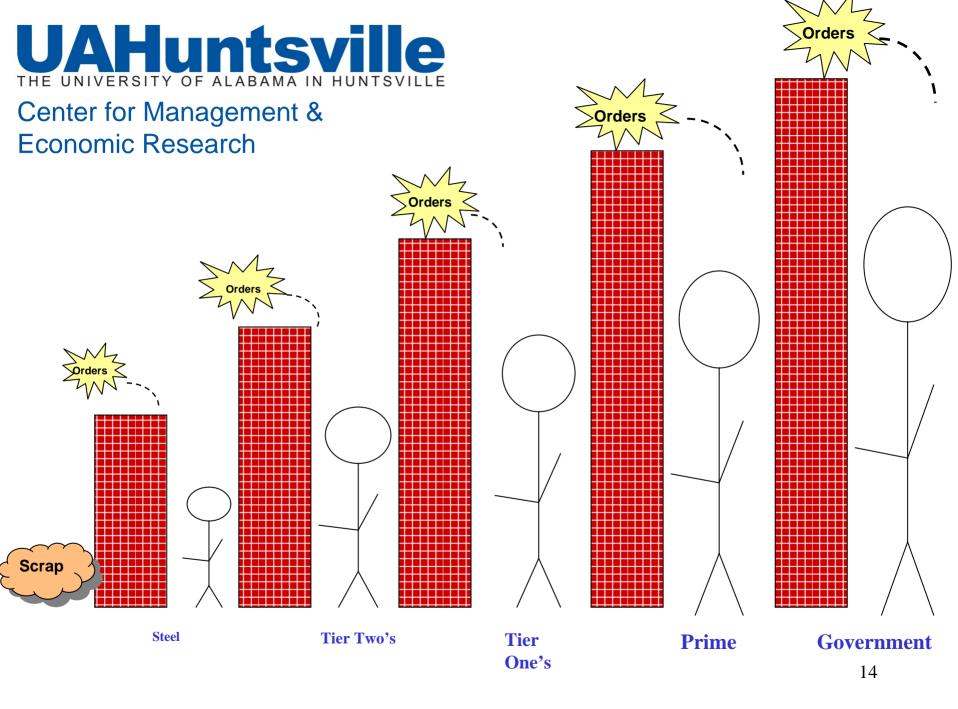
Duclos, Vakurka, Lummus (2003)

"Supply chain management is a set of approaches utilized to efficiently integrate suppliers, manufacturers, warehouses, and stores, so that merchandise is produced and distributed at the **right quantities, to the right locations, and the right time, in order to minimize system wide cost while satisfying service level requirements.**"

> David Simchi-Levi, Philip Kaminsky and Edith Simchi-Levi Designing and Managing the Supply Chain, 2nd Edition

The Issue at Hand

Center for Management & Economic Research

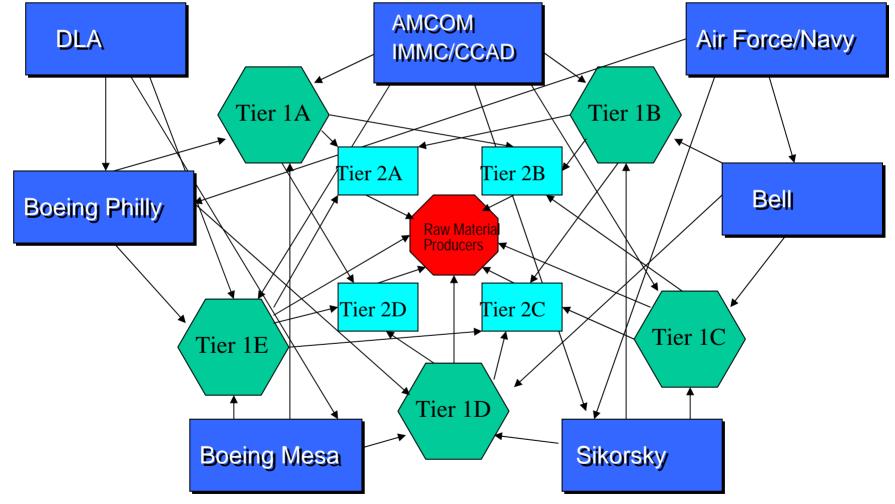

- 1. Why do we need to continually improve an existing supply chain?
 - Requirements change (unforeseen)
 - Dynamics in supply base

2. Why are we concerned about the supply base?

- Approximately 70% of the parts assembled by the OEM are purchased/manufactured from suppliers*
- Suppliers must function in a global market
 - DoD smaller percentage of business base
 - Cost of working on Government projects
- Numerous single point failures

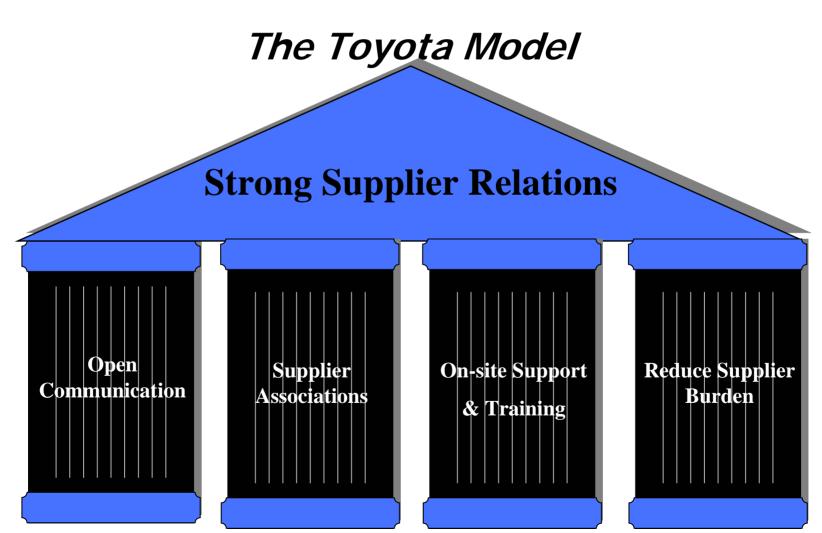
2. Importance of communication and the role of Supply Chain Roundtables

Collaboration and Trust


- Companies in the supply chain are averse to risk and investment resulting in little or no inventories
- Lack of forecast/understand demand
- Share lessons learned
- Roadmap to/for SC implementation
- SC alerts

Economic Research

- Meet business expectations
- Develop a proactive culture
- Velocity of information


UAHUNTSVILLE THE UNIVERSITY OF ALABAMA IN HUNTSVILLE

Importance of Supply Chain Knowledge

Center for Management & Economic Resea Cour Columns of Collaboration

Supply Chain Roundtables

Center for Management & Economic Research

- Identify critical suppliers at all levels of the supply chain for selected critical assemblies
- Representatives from the customer, OEM and all levels of the supply chain presented current status of the project from their point of view
- Breakout groups met to discuss issues
- Actions developed and assigned
- Actions continually updated
- Roundtables reconvene every three to four months or until collaboration becomes part of culture
- Suppliers can coordinate/initiate the roundtables

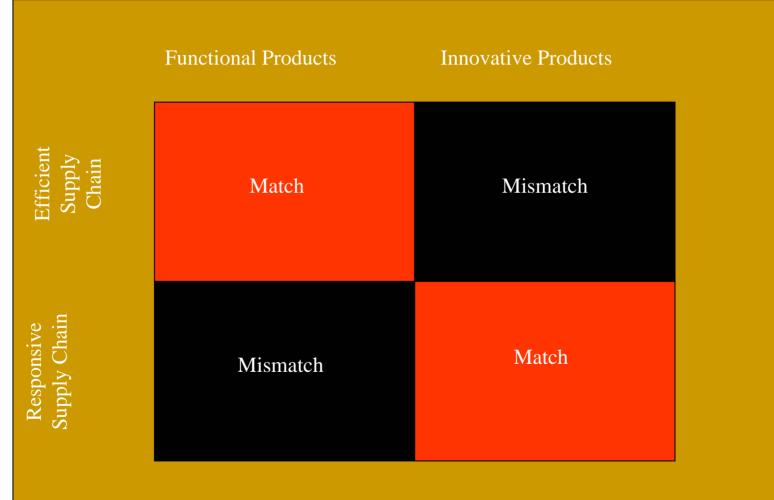
Note: Often third party organizations can serve as an effective facilitator

3. Supply Chain Management and Metrics

A Supply Chain Must Be Structured According to Product Characteristics and Customer Demands

Supply Chains Must Be Planned (Designed) or Will Not Perform to Requirements

UAHUNTSVILLE THE UNIVERSITY OF ALABAMA IN HUNTSVILLE Center for Management & Economic Research


Designing the Supply Chain for the Specific Product

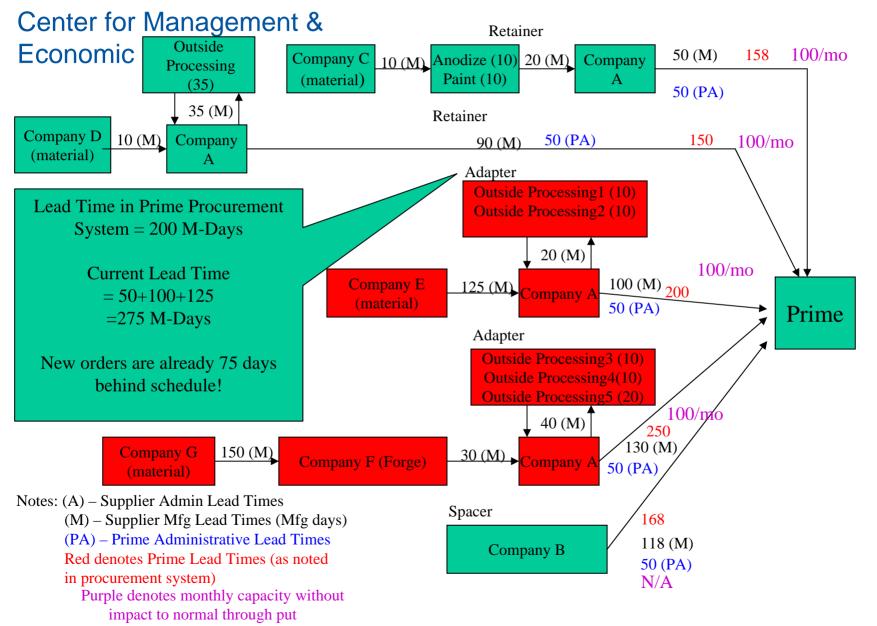
- Many companies attempt to shove everything through one supply chain structure and then wonder why some problems continue;
- Must recognize that products have different characteristics and generally need to be managed in a different manner with an aligned supply chain; and
- Efficiency and Responsiveness are generally in direct conflict.

Center for Management &

Economic Research Matching Supply Chains with Products

Marshall L. Fisher, Harvard Business Review, March-April 1997

UAHuntsville Center for Management &


Process

Economic Research

- **Identify Critical Parts for Analysis**
- Visit Prime and Suppliers
- Map Supply Chain
- Identify Critical Path and Critical Sub-components
- Attack low-hanging fruit; identify longer term improvementsimmediate results
- Look for opportunities to proliferate improved processes to other parts
- Raise overall supply chain awareness \bullet
- Removal of "stove pipe" mentality enterprise approach

UAHuntsville

Example Supply Chain Map

Center for Management &

Performance Metrics

Economic Research SCOR (Supply Chain Operations Reference) Mode

SCOR (Supply Chain Operations Reference) Model was designed to help:

- identify, define, and measure metrics across the supply chain

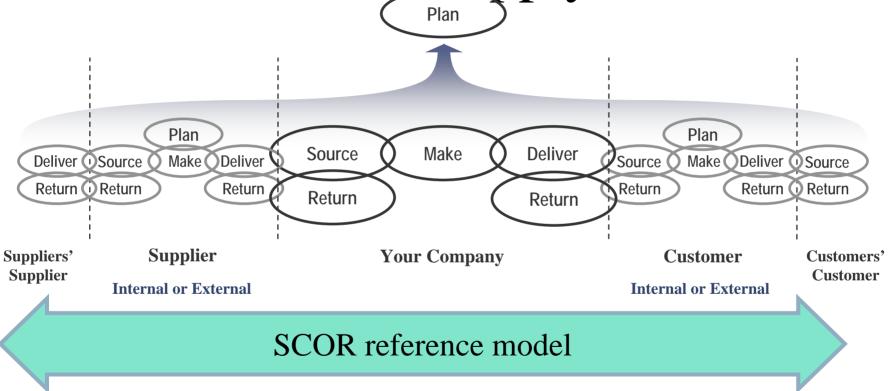
- <u>identify weak links in the supply chain by using business best</u> practices

- <u>reduce costs</u> through reduced inventories and improved order fulfillment time

SCOR Bottom Line

Center for Management & Economic Research

SCOR was developed around:


Common Terminology (e.g., Processes, Metrics)

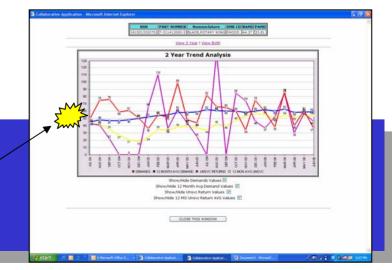
Common Definitions (e.g., Metrics – Perfect Order Fulfillment)

Evolves around Common Processes in Enterprise Supply Chain: Plan Source Make Deliver Return

Center for Management & Economic Refearch to-End Supply Chain

4. Use of collaboration tools for forecasting and planning

UAHUNTSVILLE


Center for Management & Economic Research Improving communication

Powerful Web application that is a foundation of an Open Sharing Collaborative Environment

- Key to faster sharing of forecast, demand, Delivery data
- Performs "What-If" studies
- Creates custom reports
- Incorporates 2410 data for predictive demand analysis
- Provides analytical tools for supply management
 - Aids advance posturing throughout the supply chain

Supply Chain Collaboration

	mi/secure/CA/	deplay.a	10																			Go	
			-			Colla	bora	ntive	Арр	licati	ion									_		_	
								fain M	lenu														
								iew Tr	ends)													
NSN:	1615013320702 🛩			NOUN:				BLADE, ROTARY WING				ANAL CODE: 03A12			JÍC	LOB Date:				7/1	3/200		
Part Number:	000-3 💊		UPRICE:				\$86,109.42					EAA:		1-64A	-111-	AMRC:				1	1 2M		
	Boeing Part Number: 7-311412000-5 Boeing Interchangeability Code: PA000 SHR, CD: PA000 SUPCD: A			AMCON ALT: AMCON PLT: Boeing PLT: Issuable OII: Unserviceable SOII: War Reserve Req:				1 20.5 25 201					TY EAA			-III-	LOB #:				2M 54		
												_	NMCS:			-					_		
													A0G: 0 0				Next PWD forecast D						
SMR_CD:													heatre	6	6	-111-	Next PWD Forec				438	38	
SUPCD:								202					Total: 0 0			-111	Boeing PWD For Date:			ecast			
								0					AMD: 44.37			-111-	Boeing No. Prod Rate:				-		
RNCC:	3			Below Depot Req:				126					PAHD: 33.81			116		FAT Reg'd			NO.	NO	
RNVC:	5			Safety Level Req: Reorder Point Qty				96 1536					TAMD:	78	.18	illi i	Critical List:				Y	Y	
	DEMIL CD:		_114									UNRR: 1 FRR: 0.6				511 6	STATUS: GWD:				GRI	GREEN	
Partnering Item:	Partnering Item: NO			Requirement Objective Qty				197	1974												WE		
			.,				3	WHAT	IFS			н										-	
							Delive	ery S	ched	ule													
	313	AUG	660	OCT	MOW	DEC	14.14		MAR	ADD	MAY	1104	JUL	ALL C	660	OCT	NOV	DEC	1.0.14	E C P	MAR		
													2007										
Recurring Demand Req.	44	44	44	44	44	44	44	44	44	44	44	44	44	44	44	44	44	44	44	44	44	44	
Programmed Demand Req	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	
Due In																	_						
Boeing Promised Delivery Sche	dule 50	50	50	50	50	50	50	50	50	0	0	۵	فكال		٥	0		0	0			0	
	N QTY																						
PRON Contract SPII				· · ·		50	_	6	6	0		6	6		0	0	6	6	10	6	6	0	
Number SPI	312 50	150	50	50	50																		
		50	50	50			42	50	50	50	50	50	50 1	0	50	50	50	50	21	10	6	0	

Real-Time Data Sharing

Trend Data 2 yr and/or 5 yr

5. Lean Implementation in both manufacturing and business processes

-- both within your organization and at the interfaces with other companies

Lean . . .

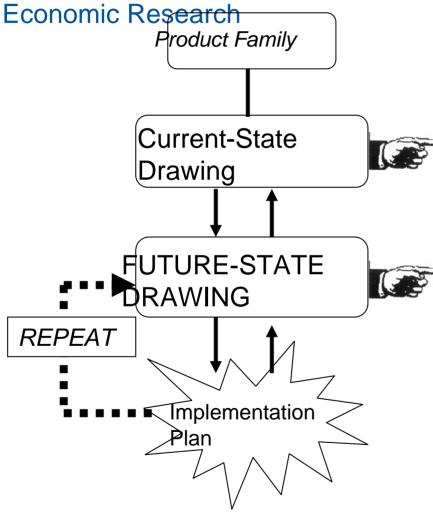
A systematic approach to identifying and eliminating waste (nonvalue-added activities) through continuous improvement by flowing the product at the pull of the customer in pursuit of perfection. -- The MEP Lean Network

Lean Issues

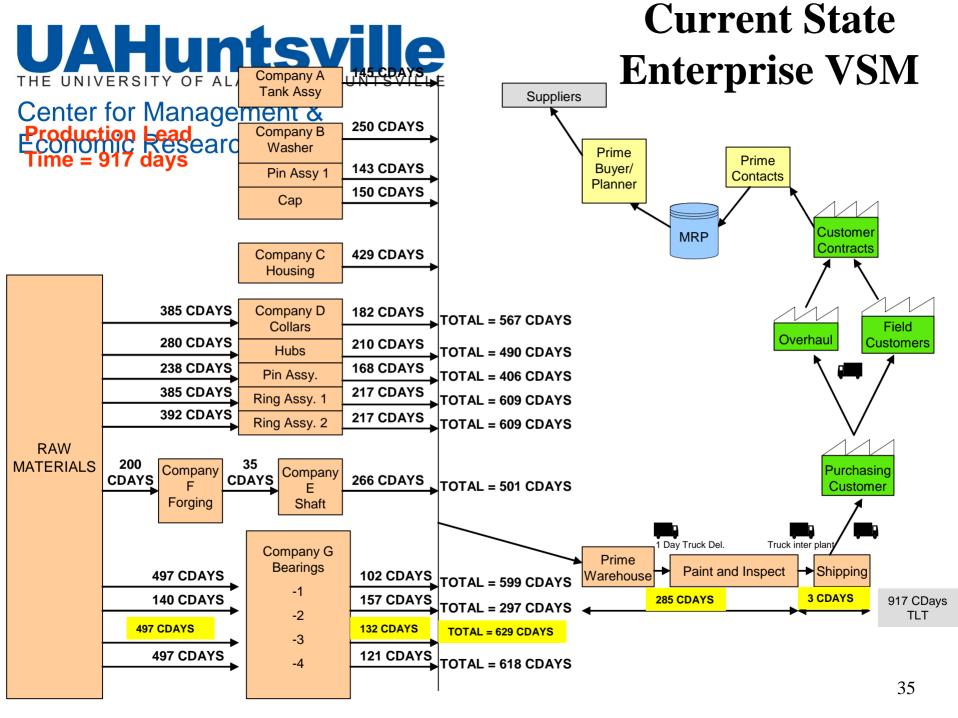
- Lean associated with auto industry (Toyota)
- Perception it is difficult to apply in aerospace (machine shop) environment
- In reality, lean principles are applicable in all industries
- Lean principles are applicable in office environment and within supply chain
- Lean training and implementation in non-traditional production systems available
 - NIST Manufacturing Extension Partnership
 - MIT Lean Advancement Initiative
 - Customers
- Lean Tools
 - Value Stream Mapping
 - Kaizen Events

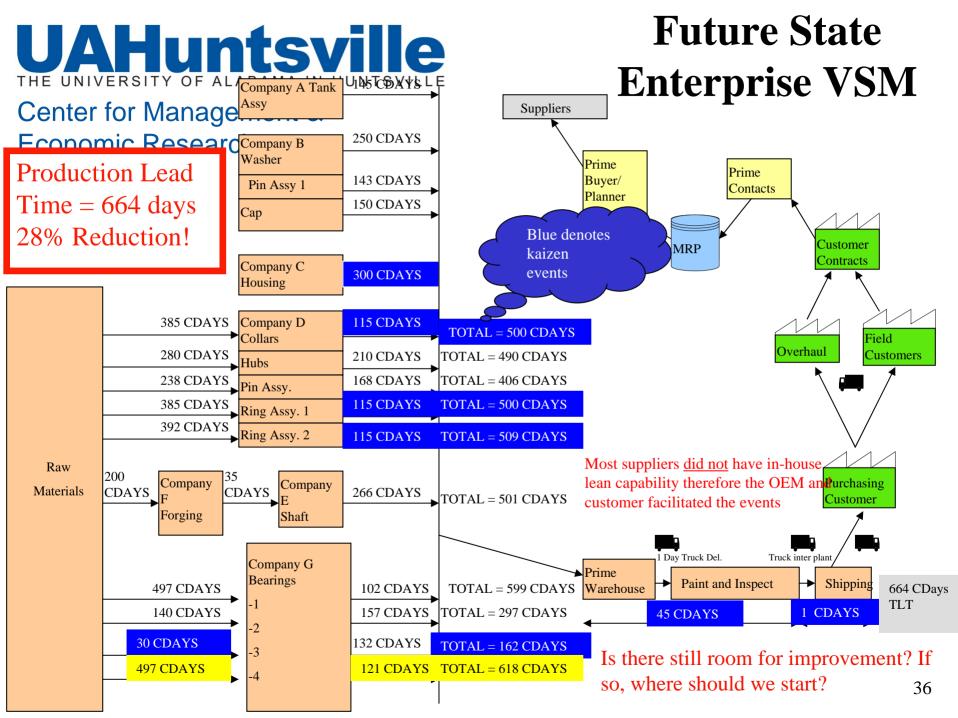
The Value Stream Mapping Objective

Document a product group's flow from <u>raw</u> <u>material</u> to <u>finished part</u>, and draw a <u>visual</u> <u>representation</u> using <u>VSM symbols</u> that represents every process and activity in the <u>material</u> and <u>information</u> flows.



Next draw a <u>future state</u> of the value stream using <u>VSM symbols</u> to create the <u>desired</u> flow.


Center for Management &



Using the Value Stream Mapping Tool

- •Determining the product groupings, then for each:
- Understand how the shop floor currently operates.(Foundation for future state.)
- •Design for a lean flow

•Determine how to get there!

Kaizen Events

Center for Management &

Economic Research

- Kaizen is the process of:
 - Identifying & eliminating waste
 - as quickly as possible
 - at the lowest possible cost
- Kaizen requires:
 - Continuous, gradual, persistent improvement
 - by all employees and management
- Kaizen utilizes:
 - Cross functional team
 - Focused scope
 - Aggressive goal

6. Innovative strategies for increasing value added

Adding Value

Center for Management &

- Economic Research More parts purchased = more oversight (overhead) cost required by prime contractors
 - Suppliers can produce subassemblies or kits for prime
 - Cost savings to Prime: Supplier labor and overhead cost are probably lower than that of prime
 - Advantageous if supplier produces more than one part of the subassembly
 - Requires supplier to have/develop ability to manage multiple suppliers and perform subassembly QA
 - Serve as prime on small projects
 - Avoids "bid busts"
 - Traditional primes serve as first tier supplier

	<u>Company A</u> Bolt	134 Days		
тн	<u>Company C</u>		и 8	F
E	Rev Spring	155 Days		
	<u>Company D</u> Bolt	210 Days		
	<u>Company E</u> Bushing	080 Days		
	<u>Company F</u> Bushing			
	<u>Company G</u> Seal Seal Sleeve Seal Seal	120 Days 120 Days 120 Days 120 Day 120 Day 189 Days		
	Company H Rev Limiter	197 Days		
	<u>Company I</u> ID Plate ID Plate	120 Days 110 Days		
	Company J Stop Nut Plain Nut Bracket Assembly	210 Days 239 Days 170 Days		
	<u>Company K</u> Shim Shim	075 Days		
	<u>Company L</u> Washer	167 Days		
	<u>Company M</u> Support	119 Days		
	<u>Company N</u> Weight		I	I

Company	
Company O Sleeve Bushing	231 Days
Sleeve	120 Days
Washer	120 Days
Nut	155 Days
Key	155 Duys
Company P	
Hub	300 Days
Hub-Class	320 Days
Pin-Class	290 Days
Pin	250 Days
Company Q Pitch Housing	
·	
Company R Cover	180 Dava
Retainer	180 Days 180 Days
Retainer	180 Days
<u>Company RR</u>	170 D
Cover	170 Days
Prime/LCMC	•
A	
Company S	
<u>Company S</u> Bearing	180 Days
	180 Days 170 Days
Bearing	170 Days 230 Days
Bearing Bearing Bearing Bearing	170 Days
Bearing Bearing Bearing Bearing Bushing Sleeve 275 Days	170 Days 230 Days
Bearing Bearing Bearing Bearing Bushing Sleeve 275 Days Company T	170 Days 230 Days 250 Days
Bearing Bearing Bearing Bushing Sleeve 275 Days Company T Adapter	170 Days 230 Days 250 Days 100 Days
Bearing Bearing Bearing Bearing Bushing Sleeve 275 Days Company T Adapter Weight	170 Days 230 Days 250 Days 100 Days 113 Days
Bearing Bearing Bearing Bearing Bushing Sleeve 275 Days Company T Adapter Weight Liner	170 Days 230 Days 250 Days 100 Days 113 Days 210 Days
Bearing Bearing Bearing Bushing Sleeve 275 Days Company T Adapter Weight Liner Spacer	170 Days 230 Days 250 Days 100 Days 113 Days 210 Days 176 Days
Bearing Bearing Bearing Bearing Bushing Sleeve 275 Days Company T Adapter Weight Liner Spacer Lower Liner	170 Days 230 Days 250 Days 100 Days 113 Days 210 Days 176 Days 197 Days
Bearing Bearing Bearing Bearing Bushing Sleeve 275 Days Company T Adapter Weight Liner Spacer Lower Liner Tank	170 Days 230 Days 250 Days 100 Days 113 Days 210 Days 176 Days 197 Days 281 Days
Bearing Bearing Bearing Bearing Bushing Sleeve 275 Days Company T Adapter Weight Liner Spacer Lower Liner	170 Days 230 Days 250 Days 100 Days 113 Days 210 Days 176 Days 197 Days
Bearing Bearing Bearing Bearing Bushing Sleeve 275 Days Company T Adapter Weight Liner Spacer Lower Liner Tank	170 Days 230 Days 250 Days 100 Days 113 Days 210 Days 176 Days 197 Days 281 Days
Bearing Bearing Bearing Bearing Bushing Sleeve 275 Days Company T Adapter Weight Liner Spacer Lower Liner Tank Bolt	170 Days 230 Days 250 Days 100 Days 113 Days 210 Days 176 Days 197 Days 281 Days
Bearing Bearing Bearing Bearing Bushing Sleeve 275 Days Company T Adapter Weight Liner Spacer Lower Liner Tank Bolt Company U	170 Days 230 Days 250 Days 100 Days 113 Days 210 Days 176 Days 197 Days 281 Days

260 Days

Boot

Aircraft Assembly Suppliers

<u>Company W</u>	
Weight	126 Days
Weight	100 Days
<u> </u>	•
<u>Company X</u>	
Collar	
Cover Assembly	
~	
Company Y	
him	150 Days
Sompony 7	
<u>Company Z</u> Ring	150 Dava
Kilig	150 Days
Company AA	
Shaft	
Sleeve	
Company BB	1.00
Washer	110 Days
Company CC	
Washer	100 Days
Retainer	100 Days
	100 2 4/5
Company DD	
Droop Stop	250 Days
Arm	250 Days
Plate-Class	250 Days
Liner	197 Days
Block	275 Days
Stop	250 Days
Washer	280 Days
Pin Assembly	173 Days
Pin Assembly	210 Days
Plug	176 Days
Tank Assembly	,
Beam	
Cap	
•	
Company EE	
Washer	120 Days
ampany FF	
<u>Company FF</u> Tank	
1 ann	
Company GG	
Cover	080 Days
	000 D ujb
Company HH	
Tank Assembly	
·	

7. Understanding requirements and challenging status quo

What are the real requirements?

- Sources of Requirement?
 - Legislation

UAHuntsville

- Government and/or Industry Policies and Procedures
- Folklore
- Interpretation of roadblocks (FAR)
- "Not invented here" mentality?
- "We have always done it that way"
- Proactive versus reactive

"The FAR is the most misquoted and misinterpreted book second only to the Bible!"

Kenneth Sullivan Circa 2005

JAHuntsville

Challenge the Status Quo

- Do the requirements make sense?
- Are you using the wrong requirements?
- Does Value Engineering support change? (Note: must work through primes)
- Historical failure rate data?

8. New and emerging contract structures

UAPPENDIX OF ALABAMA IN HUNTSVILLE Long Term Contracts Center for Management & Economic Research

- How do you want the supply chain to behave?
 - Customer and owner of supply chain must define this!
 - Contracts drive supply chain behavior!
 - Are we rewarding Outcome A while hoping for Outcome B?
- •Balance long term contracts with flexibility and adaptability;
- •Incorporate provisions for volatile energy and commodity prices

-Reduce risk to small businesses with long term contracts

-Reduce risk of late deliveries due to funding

•Delivery Performance Incentives

Performanced Based Logistics

- Buying performance not parts
- Power by the hour

UAHuntsville

- Shifting risk to the supply chain
- Potential for higher profit margins
- All parties must understand the requirements and metrics

Economic, industrial and demographic trends

UAHUNTSVILLE THE UNIVERSITY OF ALABAMA IN HUNTSVILLE Center for Management & Economic Research

Economic, industrial and demographic trends

- Shrinking Industrial Base in the US
- Some manufacturing returning to the US
 - Higher energy prices have changed the business model of off shore manufacturing
 - Rate of inflation in developing countries can quickly negate labor cost advantage
- Looming retirements
- Workforce development

10. Supply Chain Innovations such as incentivized Work in Process

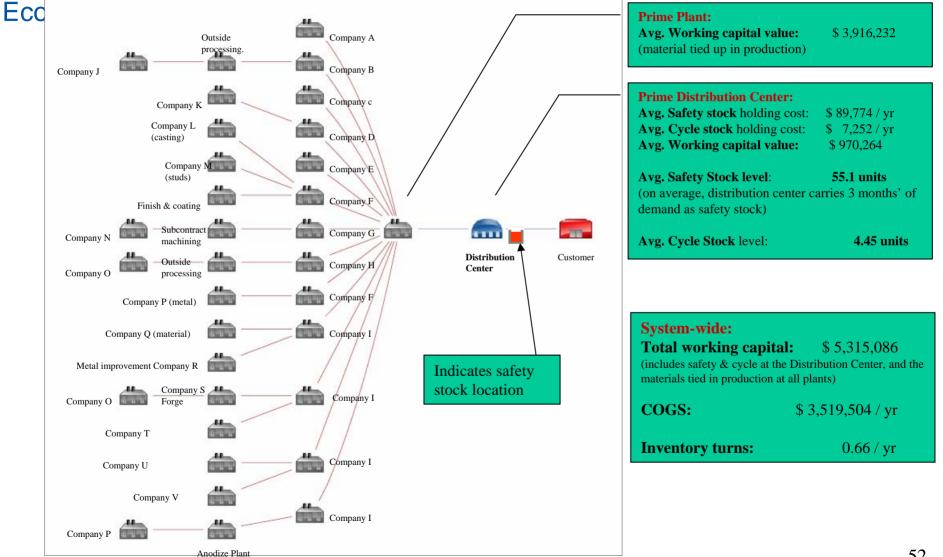
UAHuntsville

Strategic Inventory

Center for Management & Economic Research

Logic

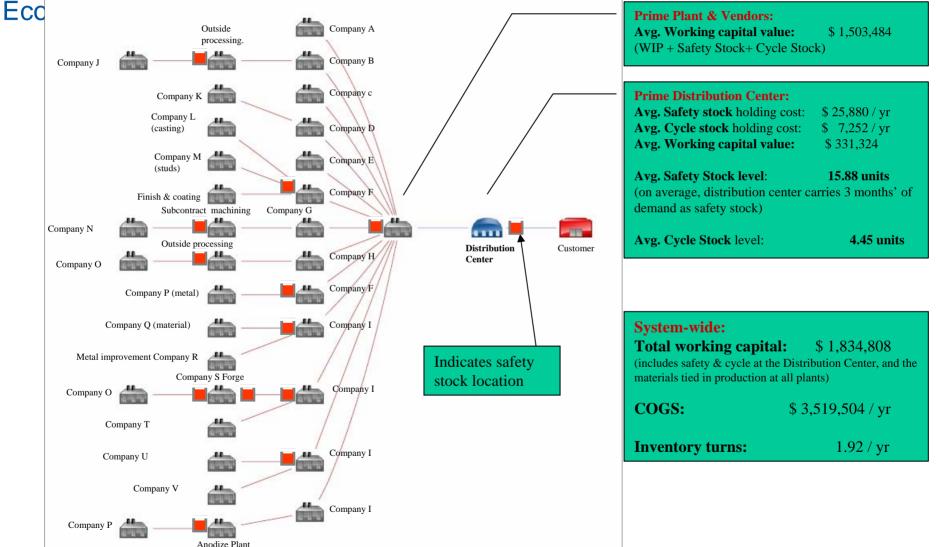
- In Aerospace/DoD, most of the long-lead items have the least amount of value added to them
- Long lead-times require customer to invest large amounts of working capital in "pipe line"


Pilot Project

- A joint AMCOM and DLA task is performing an analysis of four CH-47 parts to develop modeling methodology for strategically placing WIP
- Upon completion, the model findings will be used to develop pilot contracts to validate the strategic placement of inventory

UAHuntsville UNIVERSITY OF ALABAMA IN HUNTSVILLE

Modeling and Optimization Overview of Base Case


Center for Management &

UAHuntsville

Using Strategic Inventory throughout the Supply Chain

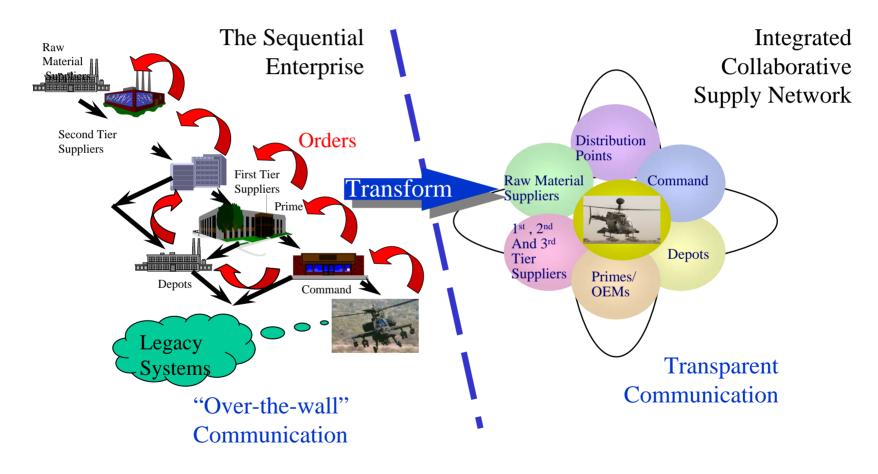
Center for Management &

Readiness Optimization Approach: or Move to a New Curve **Supply Availability Current Approach: Increase \$ to Increase Readiness**

UAHUNTSVILE Move to New Performance

IUNTSVILLE

Curve Through Optimization



Summary and Conclusions

The Goal: Transform the Enterprise

Center for Management & Economic Research

Center for Management &

Economic Reports are critical in the Aviation and Defense Supply Chain

- Be more involved!
 - Communication and collaboration
 - YCDBBSOYA
 - Challenge requirements
- Strategically expand your core competencies
 - Sub-assembly manufacture
 - Supply Chain and Program Management
 - Process transformation
- Invest in innovations
 - Processes
 - Systems
 - Technologies

Center for Management &

Economic Research

NDIA Mfg Division Survey

- Supply Chain Network Committee is performing a study of small to mid-sized suppliers that are or have been suppliers to the aerospace/defense industry
- Study is interested in identifying those factors that influence supplier involvement in this industry
- Short web-based survey is available on the NDIA web-site (www.ndia.org/Divisions/Divisions/Manufacturing)
- Participation is voluntary and all responses will be kept confidential
- Your participation is welcomed and needed.

Contact Information

Center for Management & Economic Research

Kenneth W. Sullivan, Ph.D., P.E. Director, Office of Supply Chain and Product Lifecycle Management Center for Management and Economic Research <u>sullivk@uah.edu</u> (256)824-2676