Innovating for the Future

Larry Schuette Office of Naval Research <u>larry.schuette@navy.mil</u> 703.696.7118

DoN Investment Portfolio

Current Innovative Naval Prototypes

- What alternate futures can these INPs enable?
- What disruptive guidance should we adopt for future INPs?

Integrated Topside INP

Seabasing Enablers INP

Going From Idea to INP

What's the Next Big Bet? Potential FY-12 INP Candidates

- Autonomous & distributed electronic warfare capabilities
- Autonomous cargo/medevac UAV
- Autonomous Damage Control Technologies
- Maintenance-free ship/aircraft
- Electric ship/submarine
- High bandwidth communications with submerged submarines and UUVs
- Intense/Immersive simulation training
- Unmanned Vehicle Sentry System
- Land, air, surface and sub-surface vehicles
- UUV for ASW training
- Ship-board Autonomous Logistics Enablers

Most are Autonomous in nature, which is the most game changing? Which will change how we fight?

22

ONR

14

INNOVAT

What's Holding Us Back? Limitations of Current Autonomous Systems

-Require multiple operators -Cannot easily share assets or collaborate

Forward units need dedicated operators (require protection)Data hard to disseminate

-Require human intervention to maintain performance

-Autonomy tailored for specific missions, users, and environments -Reliance on pre-programmed plans -Tough to adapt

- -Not as smart as animals
- -Limitations in challenging weather
- -Cannot exploit environmental conditions
- -Cannot navigate without GPS & reliable maps
- -Cannot collaborate in close proximity to others

What should we fix? In what order?

Ultimately, where are we going?

DIRECTOR

- Distributed system relying on decentralized control that is flexible in its level of autonomy
- Hybrid force with manned systems and platforms
- Automated image/scene understanding, data gathering, purposeful sensing/seeking, information analysis and distributed information management
- Cooperation to perform a mission or task
- Automated distribution of tasks
- Autonomous determination of the best way to accomplish each task, with appropriate human guidance

ONR

Why Autonomous Behavior is a Hard Problem

DIRECTOR O ONR Constrained by size, weight, power, money INNOVATIO **Machine Intelligence Level** Mission Complexity (MC) Ability to: Subtasks, decision Reason, Plan, Predict Organization, collaboration Learn from experience, Performance instructions, and adapt Situation awareness, knowledge Understand the battlespace requirements High-level interactions with humans Environmental Complexity (EC) Solution ratios on: Terrain variation Human Interaction (HI) Object frequency, density, intent Type of interactions Weather Type of operators/users (e.g., workload, skill Mobility constraints levels, etc.) Communication dependencies

•

•

Frequency, duration, robot initiated interactions

Autonomy Level required is driven by EC, MC, HI

Benchmark for Autonomous Systems? Assembly Line Robotics

INNOVATION

- Complex mission
- Well known environment
- No Human interaction
- Better than a human at the task
- Thousands of iterations to get it right

ONR

DARPA Grand Challenge - UGV

- Tougher Environment than underwater or air
- No Human Interaction
- Controlled Mission Complexity by reducing speed
 - About 15% as effective as a human
- In use on Mars where no man has been

UAV Mission: Find, observe, kill

- Obvious crawl, walk, run road ahead
- Complex mission driven by high human interaction
- Lots of other missions ripe for unmanned air vehicle

UAV Focus To Date Has Been on Large Systems

- Consider future of small UAVs (<50lb)
 - Missions these systems are uniquely qualified to address
 - Cheaper
 - Decoy cost, expendable

DIRECTOR

INNOVAT

ONR

UAV S&T Autonomy Roadmap & Goals

USV Mission

- Tough environment
 - Sea state
 - Obstacle avoidance
- Range of missions to mitigate need for human interaction

Unmanned Surface Vehicle

- Mine Warfare Mission Module
 - Mine Neutralization using Electromagnetic and Acoustic Sweep
- Antisubmarine Warfare Mission Module
 - Detection and Localization using
 - Airborne Low Frequency Sonar (ALFS)
 - Multifunctional Towed Array

Deploy & Retrieve: Automated Handling of Influence Sweep

Acoustic Sweep: Generates Subsurface Acoustic Influence Field

USV Autonomy

UUV Autonomy

Maritime Reconnaissance

- Perform autonomous surveillance in littoral regions
- Torpedo-size underwater vehicle with ISR payload

Unmanned Cooperative Cueing and Intervention

- Rapid (< 5 days)
- Standoff MCM target mapping

<u>MCM</u>

- Area search, classify & map rates for mines in littoral regions
- Cooperative autonomous underwater vehicles with high resolution sonars

Ocean Surveillance

Past 10 Years

 Networks of undersea gliders with oceanographic and acoustic sensors

Undersea Surveillance

 Large area surveillance using autonomous unmanned vehicles to achieve undersea superiority of the designated battle space

Littoral ASW

- Use autonomous Unmanned Undersea Vehicles to support tactical anti submarine warfare

Off-board Surv System Sinv System Mine Recon UUV SSN tracking SS SSN conducting Mine Recon UUV

Harbor & Port Security -Hull Inspection

Multi-Platform, Multi-Static, Distributed UUV

- Autonomous, self-deployable, heterogeneous, multi-platform, system capable of rapidly detecting, identifying mines, subs over wide areas
- Goal-oriented collaborative/ adaptive autonomy, multiobjective optimization & distributed control of large teams.

Current Efforts

2025

Takeaway Challenge

- What are the missions that Autonomous systems will be better suited for?
 - Only extraterrestrial?
 - Only shop floor?
- What are the capabilities we would need?

22

- What manned platforms could we stop using?
 - 5 year plan
 - 10 year objective
 - 30 year ambition
- I look forward to your thoughts
 - larry.schuette@navy.mil