Innovating for the Future

Larry Schuette
Office of Naval Research
larry.schuette@navy.mil
703.696.7118
DoN Investment Portfolio

S&T occurs across the Time Horizon. DOI focuses on Quick Reaction and Leap Ahead.
Current Innovative Naval Prototypes

- High risk, high payoff
- Mix of weapons, platforms and sensors
- $10-$50M/yr, 4-8 year efforts

Current INPs
- EMRG
- SBE
- TACSAT
- PLUS

FY-10 INPs
- FEL
- INT TOPSIDE

- What alternate futures can these INPs enable?
- What disruptive guidance should we adopt for future INPs?
Integrated Topside INP

CVN-76 Mast

46 to 51 antennas
> 3500 pounds (Ant. Only)

NEW

4 panels, 20 meters
< 1800 pounds
Seabasing Enablers INP

T-Craft

Multi-Mode Vehicle Delivery Craft
T-Craft: High Speed Beach-able Transport
40kt in SS-4 with beaching & amphibious mode

Fuel Efficient Self Deployment

Sea Base

T-Craft Payload Capacity:
Between 4 and 10 M1 Tanks

Good Seakeeping Mode at the Sea Base

2000 – 2500nm

High Speed Transit

Fully Amphibious

25 – 250nm

OBJECTIVE
Going From Idea to INP

- Solicited and unsolicited
- Apply “Heilmeier-like” criteria
- If promising, study dollars applied to examine the effort

- Approval by CNR as a viable candidate
- Technical and operational due diligence by independent examiners
- Work toward defined entrance criteria

- Adequate funds in budget.
- Go / no-go reviews and decisions based on defined technical goals at 2-3 year intervals.
- CONOPS refinement

- Rejected, delayed, or referred to another process
- Technical Failure, Change in Priorities

- Ideas
 - Continuously seeking game changing ideas

- Concepts
 - Submitted
 - CNR Approval

- Candidates
 - Corp. Board Approval

- Approved
 - To PoR
What’s the Next Big Bet?
Potential FY-12 INP Candidates

- Autonomous & distributed electronic warfare capabilities
- Autonomous cargo/medevac UAV
- Autonomous Damage Control Technologies
- Maintenance-free ship/aircraft
- Electric ship/submarine
- High bandwidth communications with submerged submarines and UUVs
- Intense/Immersive simulation training
- Unmanned Vehicle Sentry System
- Land, air, surface and sub-surface vehicles
- UUV for ASW training
- Ship-board Autonomous Logistics Enablers

Most are Autonomous in nature, which is the most game changing? Which will change how we fight?
What’s Holding Us Back? Limitations of Current Autonomous Systems

- Require multiple operators
- Cannot easily share assets or collaborate

- Forward units need dedicated operators (require protection)
- Data hard to disseminate

- Require human intervention to maintain performance

- Autonomy tailored for specific missions, users, and environments
- Reliance on pre-programmed plans
- Tough to adapt

- Not as smart as animals
- Limitations in challenging weather
- Cannot exploit environmental conditions
- Cannot navigate without GPS & reliable maps
- Cannot collaborate in close proximity to others

What should we fix? In what order?
Ultimately, where are we going?

- Distributed system relying on decentralized control that is flexible in its level of autonomy
- Hybrid force with manned systems and platforms
- Automated image/scene understanding, data gathering, purposeful sensing/seeking, information analysis and distributed information management
- Cooperation to perform a mission or task
- Automated distribution of tasks
- Autonomous determination of the best way to accomplish each task, with appropriate human guidance
Why Autonomous Behavior is a Hard Problem

Constrained by size, weight, power, money

Machine Intelligence Level
Ability to:
• Reason, Plan, Predict
• Learn from experience, instructions, and adapt
• Understand the battlespace
• High-level interactions with humans

Mission Complexity (MC)
• Subtasks, decision
• Organization, collaboration
• Performance
• Situation awareness, knowledge requirements

Environmental Complexity (EC)
Solution ratios on:
• Terrain variation
• Object frequency, density, intent
• Weather
• Mobility constraints
• Communication dependencies

Human Interaction (HI)
• Type of interactions
• Type of operators/users (e.g., workload, skill levels, etc.)
• Frequency, duration, robot initiated interactions

Autonomy Level required is driven by EC, MC, HI
Benchmark for Autonomous Systems?
Assembly Line Robotics

- Complex mission
- Well known environment
- No Human interaction
- Better than a human at the task
- Thousands of iterations to get it right
DARPA Grand Challenge - UGV

- Tougher Environment than underwater or air
- No Human Interaction
- Controlled Mission Complexity by reducing speed
 - About 15% as effective as a human
- In use on Mars – where no man has been
UAV Mission: Find, observe, kill

- Obvious crawl, walk, run road ahead
- Complex mission driven by high human interaction
- Lots of other missions ripe for unmanned air vehicle
UAV Focus To Date Has Been on Large Systems

- Consider future of small UAVs (<50lb)
 - Missions these systems are uniquely qualified to address
 - Cheaper
 - Decoy cost, expendable
UAV S&T Autonomy Roadmap & Goals

Guidance & Control
- Shipboard Landing
- Autonomous Maneuvering

Automated Tasking
- Search Planning
- Convoy Protection
- Reconnaissance
- Small numbers of multiple systems

Maritime Video
- Automated capability to detect and track multiple targets
- Address small boat threat

Silver Fox
- Small UAV with traditional auto-pilot for control
- Limited operational eval

Support of Small Expeditionary Units
- Distributed control of multiple air systems
- Simplified interface with high-level tasking

Safe Operations
- More like manned aircraft ops for naval missions & environments

Airspace Management
- Planning & human interface technologies

Shipboard Operations
- Control & human interaction approaches for autonomous deck operations

Robustness to Weather
- Small UAS control in Challenging weather conditions
- Increase endurance taking advantage of atmospheric effects

Distributed Control of Large Numbers of Small Systems
- Control of Expendable UAS Systems that can be Mass Produced & Deployed in Great Numbers

Past 10 Years
- Maritime Video
- Robustness to Weather

Current Efforts
- Guidance & Control
- Automated Tasking
- Maritime Video
- Silver Fox

2025
- Support of Small Expeditionary Units
- Safe Operations
- Airspace Management
- Shipboard Operations
- Distributed Control of Large Numbers of Small Systems
USV Mission

- Tough environment
 - Sea state
 - Obstacle avoidance
- Range of missions to mitigate need for human interaction
Unmanned Surface Vehicle

- Mine Warfare Mission Module
 - Mine Neutralization using Electromagnetic and Acoustic Sweep
- Antisubmarine Warfare Mission Module
 - Detection and Localization using
 - Airborne Low Frequency Sonar (ALFS)
 - Multifunctional Towed Array
USV Autonomy

Adapted Autonomy
- Adapt submarine periscope sensing & image processing
- Adapt Jet Propulsion Lab Autonomy technology to USVs

USSV
- On-board auto-route generation via nav charts and GPS

Transitioned to LCS
- Part of the ONR-developed “MCM-USV”
- Part of MIW mission package #1 – USS FREEDOM

Perception-Based Navigation
- Stereo camera-based, autonomous avoidance of fixed obstacles at boat speeds up to 25 kts
- Perception-based Navigation through bridge abutments

Tracking
- Recognition & tracking of a sailboat

Multi-Vehicle Collaboration
- Multi-mission
- Multi-domain
- Persistent
- Scaleable
- Adaptable
- Affordable

Past 10 Years
Current Efforts
2025
UUV Autonomy

Maritime Reconnaissance
- Perform autonomous surveillance in littoral regions
- Torpedo-size underwater vehicle with ISR payload

MCM
- Area search, classify & map rates for mines in littoral regions
- Cooperative autonomous underwater vehicles with high resolution sonars

Ocean Surveillance
- Networks of undersea gliders with oceanographic and acoustic sensors

Unmanned Cooperative Cueing and Intervention
- Rapid (< 5 days)
- Standoff MCM target mapping

Undersea Surveillance
- Large area surveillance using autonomous unmanned vehicles to achieve undersea superiority of the designated battle space

Littoral ASW
- Use autonomous Unmanned Undersea Vehicles to support tactical anti submarine warfare

Harbor & Port Security
- Hull Inspection

Multi-Platform, Multi-Static, Distributed UUV
- Autonomous, self-deployable, heterogeneous, multi-platform, system capable of rapidly detecting, identifying mines, subs over wide areas
- Goal-oriented collaborative/adaptive autonomy, multi-objective optimization & distributed control of large teams.
Takeaway Challenge

• What are the missions that Autonomous systems will be better suited for?
 – Only extraterrestrial?
 – Only shop floor?

• What are the capabilities we would need?

• What manned platforms could we stop using?
 – 5 year plan
 – 10 year objective
 – 30 year ambition

• I look forward to your thoughts
 – larry.schuette@navy.mil