

Army Power & Energy: S&T Focus

10th Annual Science & Energy Technology Conference

21 April 2009

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Dr. Edward Shaffer

Chief, Directed Energy & Power Generation Division Sensors & Electron Devices Directorate Army Research Laboratory

Outline

- Army Power & Energy Trends
- TRADOC Warfighter Outcomes
- Power & Energy TFT Taxonomy
- Power Regimes: Definition
- Underlying Technologies
- Power Regimes
 - Soldier Power attributes, technologies
 - Mobile Power attributes, technologies
 - Platform Power attributes, technologies
- Summary

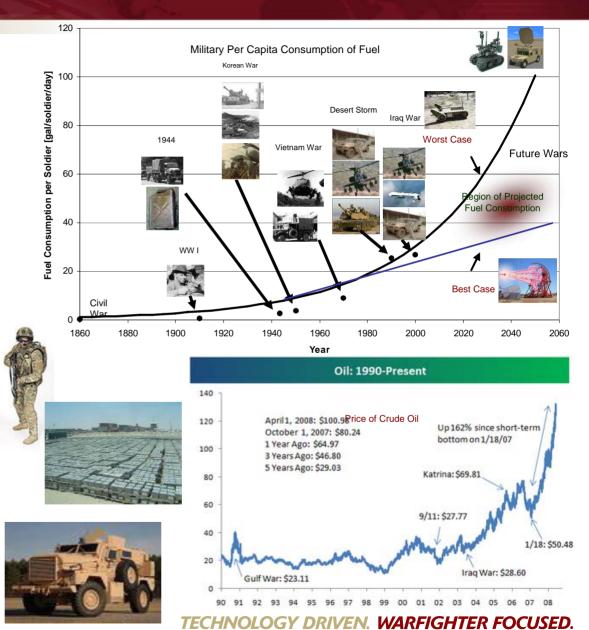
RDECOM Power & Energy Trend Assessment Summary

The Challenges

Battlefield consumption of energy increasing

- New C4ISR technologies
- IED Defeat Systems
- New weapons (EM guns, lasers)

Energy security problematic

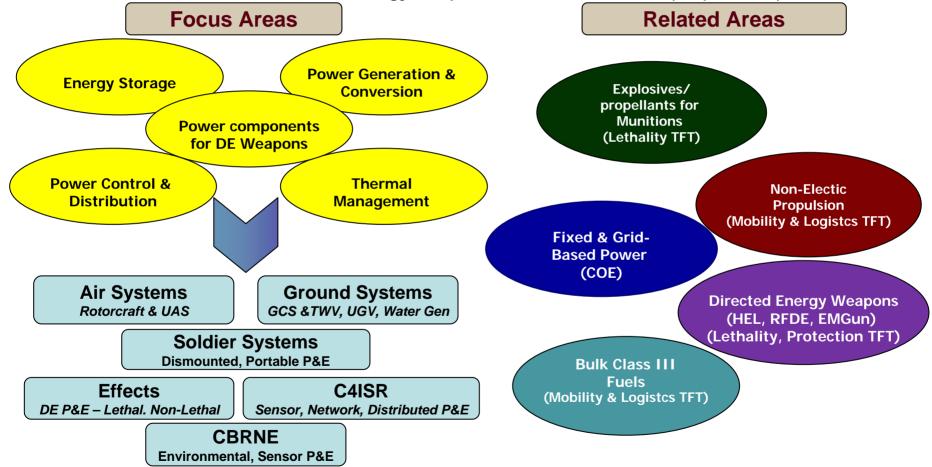

- Cost of fuel skyrocketing
- Alternative sources sought wind, solar, bio-mass, waste to energy

Operational issues

- Battery usage & limitations energy & power density
- Demand for auxiliary power on-board vehicles
- Emphasis on silent ("quiet") watch
- Unmanned vehicles (air/ground)
- Unattended sensors
- Inefficient management/ distribution of power
- Demand for soldier-wearable power

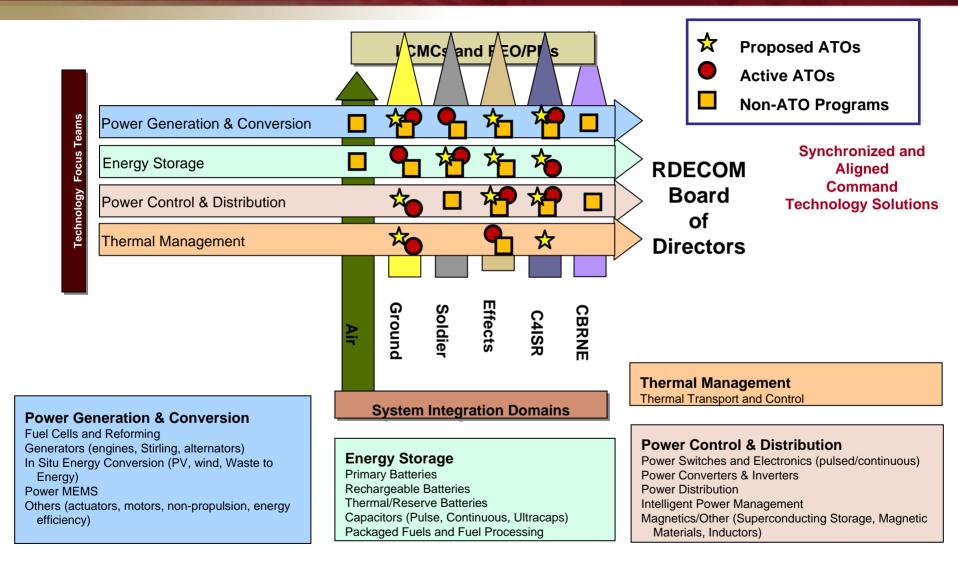
Increased emphasis on system power metrics

(KPPs, low consumption components)

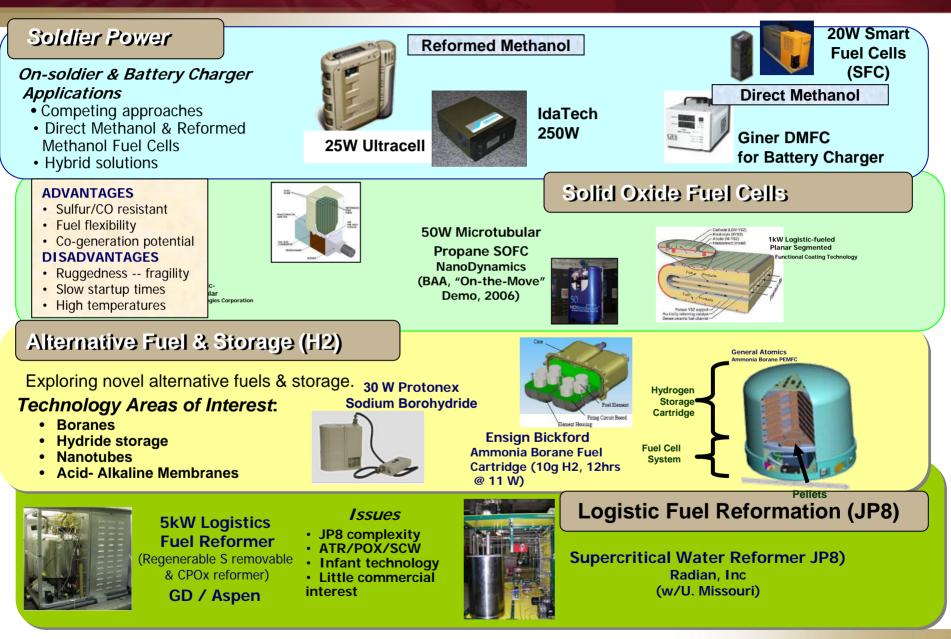

RDECOM TRADOC - Alignment of Big 5 Integrated Warfighter Outcomes

S&T TOPIC AREA AND INTEGRATED WARFIGHTER OUTCOME STATEMENT		From FY09 Warfighter Outcome Workbook (Dec 07)		
		Force Operating Capability (FOC)	Priority Within FOC	Warfighter Outcome Title
Power & Energy *	 to operate worldwide by reducing by half, the weight and volume of fuel associated with powering the force. Combat platforms require up to 30 MJ of pulsed power for lethality and 20 percent increase in continuous power to enable superior tactical mobility, speed and an excess capacity for on/off board electrical power use while increasing fuel economy by 40 percent. Emerging electrical components and systems require dismounted Soldiers to possess a fourfold increase of available power, above current 12.3 Watts/Hr, at half the 	Mounted/ Dismounted Maneuver	4	Alternative Power for Dismounted Soldiers ***
**			5	Alternative Power for Platforms **
***		Maneuver Sustainment	10	Increased Fuel Efficiency *
4	tactical weight.		TECHNOLO	GY DRIVEN. WARFIGHTER FOCUSED.

RDECOM Power & Energy Technology Focus Team Current Scope

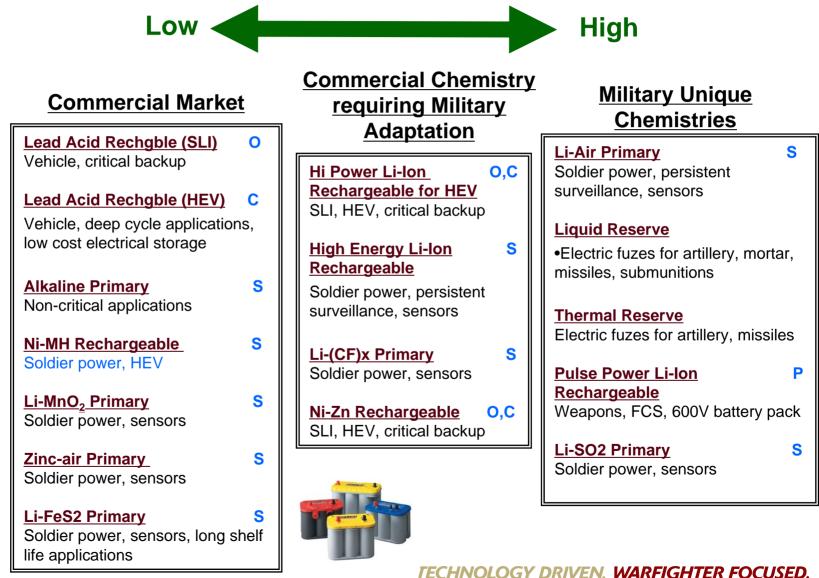

DEFINITION: Power & Energy includes systems/technologies that generate, store, distribute, condition electrical energy, or produce/distribute non-propulsion power.

Multiple Technologies, Multiple Applications



Power & Energy Technology Integration Taxonomy

Underlying Technology Example Power Generation: Fuel Cells



High

Low

Investment Priority

Underlying Technology Example Energy Storage: Batteries

S: Soldier/portable; C: Veh Continuous; P: Pulse; O: OBVP/Export

8

RDECOM Power & Energy Strategy

Requirement: Platform Surge Power , Weapon Pulse Power

> Technologies: High Power Switching & Conditioning; Intelligent Power Management, Integrated Thermal Management

PLATFORM & WEAPONS

Ground, Effects

MicroWatts to 10s of Watts

100s of Watts to 100s of kW

Up to 1000s of MW

Soldier Power Regime: Attributes & Technologies (Soldier, C4ISR, Effects, CBRNE SIDs)

Attributes

334

- Fuel Cells: 30 W/kg, 1000 Whr/kg
- Packaged fuels
- Primary Li: 200 Wh/kg, 40 W/kg, -300 to 70oC
- Metal/air: 300 Wh/kg, 10 W/kg, 100 to 70oC
- Rechargeable Li-ion: 150 Wh/kg, recharge in hours

<u>Technologies</u>

- DMFC, RMFC
- Primary Li/MnO2
- Zn/air primaries
- Li-ion cells with carbon anodes

Near Term (2011)

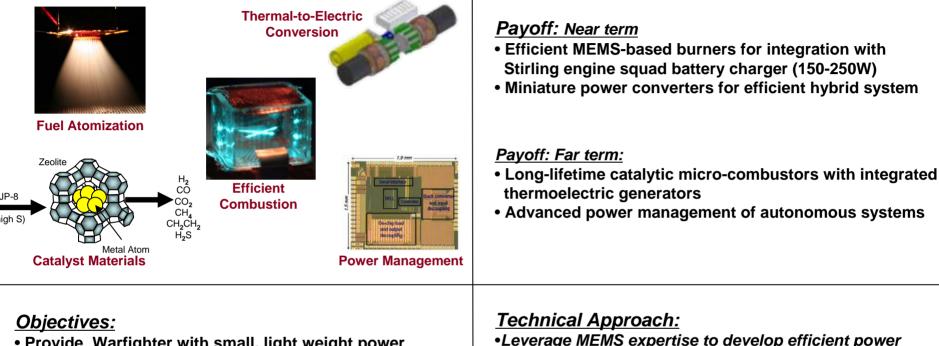
<u>Attributes</u>

STATE

- Fuel Cells: 80 W/kg 40% efficient, packaged/processed fuels
- 100 W/cc (1kW/kg) engine, 30% efficient
- Primary Li: 400Wh/kg, 20 W/kg, -10o to 70oC
- Metal/air: 300 Wh/kg, 10 W/kg, 10o to 70oC
- Rechargeable Li-ion: 120Wh/kg, recharge in minutes
- <u>Technologies</u>
- DMFC, RMFC, fuel reforming
- Fuel atomization
- Primary Li/(CF)x, Li/air primaries
- Li-ion cells w/ rapid-recharge anodes

<u>Attributes</u>

- Fuel Cells: 120 W/kg 50% efficient
- Multiple fuels
- Micro Power generation
- Primary Li: 500 Wh/kg, 40 W/kg, -300 to 70oC
- Metal/air: >700 Wh/kg, 20 W/kg, -10o to 70oC
- Rechargeable Li-ion: 200Wh/kg, recharge in minutes


Technologies

- DMFC, RMFC, Alkaline FC
- Micro fuel cells, PZT MEMS, Direct conversion, MEMS fuel control
- Multi-fuel FCs and engine systems
- Primary Li with doped fluorocarbons
- Li/air primaries, Li-ion cells with rapid recharge

Mid Term (2017)

Far Term (2027)

RDECOM Soldier Power Regime: Micro Power

• Provide Warfighter with small, light weight power sources maximizing specific energy for Soldiers, Soldier systems & sensors.

Accomplishments:

- Demonstrated low power, microfabricated fuel atomizers from 1 - 200 mL/hr (<500 W_{elec} range)
- Integrated atomizer / catalytic micro-combustor operating at 270 MW/m³

•Leverage MEMS expertise to develop efficient power generation & management components

- *Micro-fuel / air control efficient fuel atomization and mixing is required for miniature combustors*
- Catalytic combustion heavy fuels (i.e. JP-8) require new sulfur tolerant catalyst materials for long life
- Power management intelligent power conversion & management of hybrid systems improves efficiency

RDECOM Soldier Power Regime: PhotoVoltaics

<image/> <image/>	 Payoff: Near Term Less costly, more efficient Solar panels to the field Lower Weight and Volume Under one sun illumination, power densities ~ 200W/m2 Payoff: Far Term Under one sun, illumination up to 400W/m² Creating "Smart Skins" for Army systems consisting of monolithically integrated thin photovoltaics with power conditioning circuits and thin film batteries Potential efficiencies >30%
 <u>Objectives:</u> High efficiency PV and TPV, crystalline and flexible, for remote power, expeditionary forces, Soldier aux power, un-attended/ autonomous sensors & systems Novel micro PV structures integrated with batteries and interconnect schemes for micro devices 	<u>Technical Approach</u> : • Develop substrate removed muli-color tandem photovoltaic arrays with novel interconnects to develop high voltages or currents
 <u>Accomplishments:</u> Fabricated (5 x 5) 1mm² solar cell arrays, yielding 4 volts at 5 ma/cm² current Initial un-optimized efficiencies of 14%. 	One Color Inverted GaAs PV that is 20% efficient on a flexible Substrate Offers 5-times higher power than existing Army PV power systems

RDECOM DoD Wearable Power Prize (WPP) Competition

Grand Challenge Goals:

• Wearable Power System that provides 20 watts of average power with 200 watt peaks for 96 hours weighing 4kg or less (480wh/kg)

• Inspire students, academia, private inventors, and industry to leverage resources and compete using innovative ideas and approaches

 Reach non-traditional DoD performers by lowering barriers for participation

Capstone Event 22 Sep – 4 Oct 2008

Marine Corps Air Ground Combat Center (Twentynine Palms, CA)

DoD Prize Execution Team

DDR&E DUSD(LABS) –Sponsor Army (ARL Lead), Navy, and Air Force

Competition Funding (\$5.7 M)

\$1,750,000 Prize Purse\$2,550,000 Prize Execution\$1,415,000 Service Cost Share

Wearable Power Prize Results

•Competition metrics were met by 5 Teams:

• 1st Dupont/Smart Fuel Cell, \$1M Prize

•2nd AMI, \$500K Prize

•3rd Jenny 600S, \$250K Prize

•4th Ultralife 5th Ultracell

•7 Teams demonstrated energy densities > 480 Watt-hour/kg

•169 Teams entered, 108 Teams submitted Fuel Plans, 55 Team submitted System Descriptions and 20 Teams competed at Twenty Nine Palms

AMI

OAM

Jenny 600S

DoD Wearable Power Prize Competition Outcomes and Way Ahead

•Uniquely demonstrated highest energy density wearable power systems using realistic Warfighter multi-day load profiles

• Goal: 480 Whr/kg at < 4 kg Demo: up to 790 Whr/kg at 2.4 kg

•Significant industrial investment - multiple teams spending \$1M plus

- New technologies revealed including materials, devices and system concepts
- Material approaches from non traditional players (Russia)
- Wide variety of proposed fuels
- Value to OSD, Services, and Army
 - New interest in S&T challenge prizes and P&E technology
 - Collaboration, joint-service engagement and assessment by the DoD P&E community
 - Raised awareness at Service and National leadership levels
 - Outreach component exposure to DoD Science and Engineering
- Value to Competitors

RDECOM

- DoD funded, independent laboratory grade test and evaluation in field-like environment
- Access to DoD Professionals (Civilians and Warfighters) -
 - Direct feedback and real-time technical assessment from key service SMEs in P&E
- Exposure to other teams collaboration and networking opportunities
- National and international publicity
- Initial Follow-on Actions:
 - Review S&T portfolios for adequacy, opportunities in underlying technologies
 - Assess DoD, Army interest in packaged fuels, qualification
 - Outreach to non-traditional players, new approaches

Mobile Power Regime: Attributes and Technologies (C4ISR, Ground, Air SIDs)

Attributes

- High power density (50W/L), quiet power generation (<50 dBA @ 7m)
- Packaged / processed fuels
- Fuel Cells, 40 W/kg 35% efficient
- Hybrid energy storage

Technologies

- Modified COTS engine generators
- Solid oxide fuel cells
- ATR, CPOX, Steam Reforming, Plasma
- Hybridized primary/ rechargeable batteries

<u>Attributes</u>

- Silent power generation (silent @ 10m)
- 100 W/cc (1kW/kg) Power Density, 30% efficient
- Fuel Cells 80 W/kg 40% efficient
- Rapid charge/discharge

Technologies

- Novel, very high power density engine generators
- Compact small engine/generators
- Reformer based fuel cells (SOFC) generators, ATR, CPOX, Steam Reforming, Plasma
- Rapid recharge Li-ion anodes for hybrid sources

Attributes

- Silent power generation (silent @ 50m)
- Fuel Cells 120 W/kg 50% efficient
- Advanced air cooling

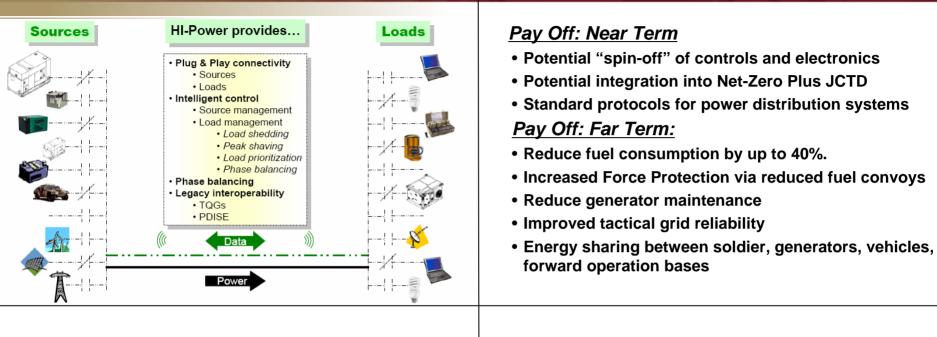
Technologies

- Multi-fuel fuel cells (SOFC, PEM) and engine systems
- Compact high power generators/alternators
- Advanced magnetics for generators/ alternators
- Micro air coolers with laminar flow

Near Term

Mid Term

Far Term


Mobile Power Regime: OBVP/Under-Armor APU

20 kilowatts on the move 20 kilowatts station 20 kilowatts stati	 Pay Off: Near Term Abrams UAAPU: extended engine-off mission capability Reduce fuel consumption by 4,300 gallons* per day per brigade Save over \$86,000 per day (\$20/gallon JP-8) or 18 miles range. High power alternator upgrade kits Increased power at idle and low speeds OBVP Demonstrators USMC / ONR - 120kW MTVR (MAY 2008) PM Stryker / TARDEC – 70 kW CMPS Stryker (AUG 2008)
Auxiliary Power Units	<u>Pay Off: Far Term</u>
APUs: Power for sustained engine-off missions	 Family of common APUs for ground vehicle fleet JP-8 fuel cell generation system - silent power demo
	*M1A2 System Spec defined battlefield day (12 hours engine-off)
 <u>Objectives</u>: Enhance OBVP for operational platforms OBVP for fleets - reduce idling and fuel consumption Under-Armor APUs: engine-off, silent watch <u>Accomplishments:</u> Fielded OBVP alternator upgrade kits (HMMWV/RG-31) Gen III rotary APU for Abrams - May 2009 (on-vehicle demonstration and user assessment) Advanced power generation system for MRAP block upgrade for FUE 4th QTR FY09 Phase I demonstration of idle reduction APU for HTV 	 <u>Technical Approach:</u> Small engine/ generator development CPOX fuel reforming, sulfur removal Fuel and combustion control Advanced magnetics, structural materials Idle reduction techniques Intelligent power management

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

RDECOM

Mobile Power: HI-Power (Hybrid Intelligent Power)

Objectives:

RDFCO

- Seamlessly integrate generators into electric grid
- Reduce fuel consumption by up to 40%.

Accomplishments:

- Leveraged previous RDECOM/CERL SBIRs
- Three technology development contracts (FY08) (deliverables FY09)
- Issued revised BAA for FY09
- Established test bed and support equipment

Technical Approach:

- CERDEC Technical Lead; PM-Mobile Electric Power POR; Joint IPT Established
- Integrate competing component technologies
- establish protocols and standards; performance specifications
- Bridge architecture gaps
- competitive down select (FY10-13); final development, qualification; fielding after FY14

Platform & Weapons Power Regime (Ground, Effects SIDs)

<u>Attributes</u>

- Power Electronics w/ 80o C coolant, 1200 V continuous
- Room temp, 10 kV pulsed
- Power Density: DC/DC: 5 kW/l; AC/DC: 40 kW/l
- Rechargeable Li-ion: 150 Wh/kg, recharge in hours
- 80oC Water/Ethylene Glycol, 200 oC air cooling

Technologies

- Silicon, SiC switches
- Nanocrystalline magnetics
- Li-ion cells w/ carbon anodes
- Capacitors w/ metallized polypropylene film, 1250 C

Attributes

- Power Electronics w/ 100o C coolant, 1200 V continuous
- 800 C, 10 kV pulsed
- Power Density: DC/DC:8 kW/l; AC/DC: 50 kW/l
- Rechargeable Li-ion: 120Wh/kg, recharge in minutes
- Capacitors: msec discharge, 10J/cc, T<1000 C
- 110oC Water/Ethylene Glycol; 250 oC Air cooling

<u>Technologies</u>

• SiC high current devices pulsed and continuous

Mid Term

- Nano-particle magnetics
- Li-ion cells with rapid-recharge anodes, high temp capacitor films
- Micro Channel designs

<u>Attributes</u>

• 150 oC coolant, 1200 V continuous

20

30

40 50

10

- 120 oC, 10 kV pulsed
- Power Density: DC/DC:10 kW/l; AC/DC: 60 kW/l
- Rechargeable Li-ion: 200Wh/kg, recharge in minutes
- 150oC Oil cooling 300 oC Air Cooling

Technologies

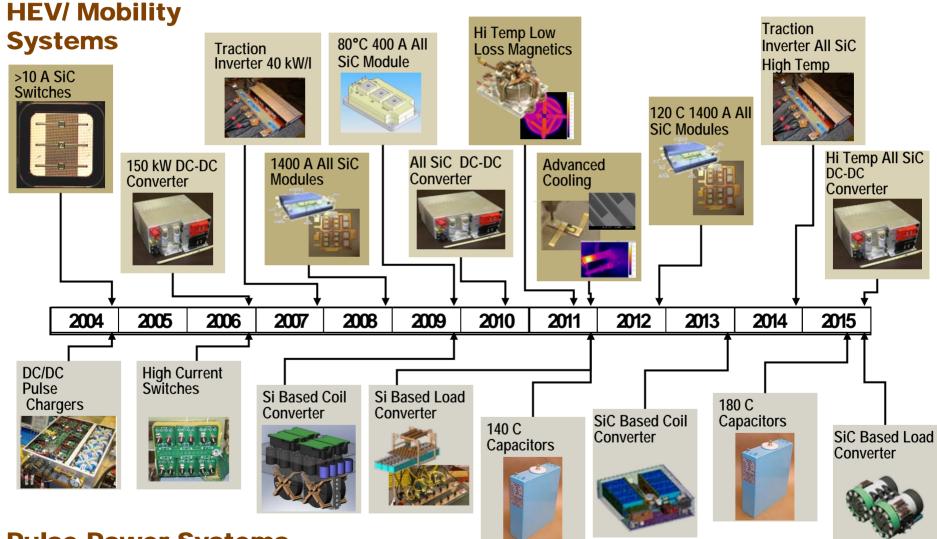
- Next gen devices (GaN, diamond)
- Bulk nano-lattice magnetics
- Bulk ceramic capacitors
- Bi-directional solid state/MEMS breakers
- Li-ion cells with rapid recharge, high voltage anodes and cathodes
- Double sided micro channels, MEM based spray cooling, micro air coolers

Far Term

Near Term

Platform & Weapons Power: Power Switches

RDECOM

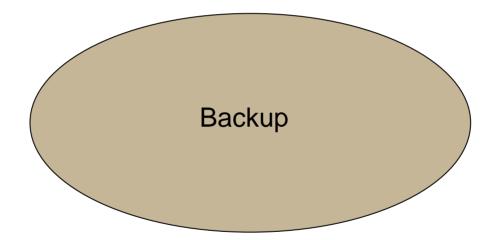

1

EM Gun HPM/DE Systems Mobility Systems	<u>Payoff: Near term</u> High temp. compact converters that will enable reliable operation at 80-90 C within weight/size and cost constraints
Current 4" Diam.6" Diam. SiC Wafers	 <u>Payoff: Far-term</u> Advanced platform capability with reliable operation at 100-120 C Advanced capabilities at reduced power and cooling system size and cost Limp home capability
<u>Objective</u> : Provide high-temperature high-power SiC devices for high-power density high-efficiency power converters for platform mobility, survivability, and lethality systems.	 <u>Technical Approach</u>: Develop larger diameter material (current 4", future 6") Ultra large area SiC devices Decrease defects in starting material & in processed MOS gating structures Develop ultra-large area device designs & processes Enhance identification of process- and stress-induced defects in SiC devices Focus: MOS gating, device termination structures Screening, burn-in, and high-temperature accelerated reliability determination methods. Investigate next generation semiconductor materials (GaN)
 <u>Accomplishments:</u> Demonstrated SiC 10 A switches in 10/20 kW TRL-4 inverter at 110-150C. Demonstrated SiC 20 A switches in 60/80 kW inverter at 80 – 120 C, TRL-4. Operated paired SiC MOSFETs and diodes up to 80 A rms (200 A peak) for 20 hours at 150-190 C junction 	
temp. 19	TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

RDECOM Platform Power: Component Thermal Management

<complex-block></complex-block>	 Payoff: Near term 2-5X module volume reduction 2X thermal resistivity improvement 2X system power density improvement System operation above 100 °C Payoff: Far term: 5-10X module volume reduction 6-7X thermal resistivity improvement 2X system power density improvement System operation above 115 °C
<u>Objective</u> : Increased power efficiency to reduce power train cooling burden. <u>Accomplishments:</u> •2X Battery-To-Bus efficiency increase •7X MEMS thermal management improvement	 <u>Technical Approach</u>: Develop high heat rejection and low flow resistance designs. Materials with high electrical resistance and low thermal resistance that can replace current package materials. Improved die attach materials for increased reliability and reduced thermal impedance. Advanced computer models for phase change cooling methods. Improved di-electric isolation compounds for high temperature operation.

RDECOND Platform Power: Power Electronic Components HEV and Pulse Power



Pulse Power Systems

Summarv

