Ammunition Stockpile and Service-life Reliability:
Improvement Efforts at US Army ARDEC

Presented for Precision Strike Association Firepower Forum

Jason L. Cook, Ph.D
Chief, QE&SA Sciences Division
QE&SA – ARDEC – RDECOM
The Problem

• Testing for reliability through the life of a smart-munition is not financially feasible
 – Firing 100+ rounds from each strata
 – Every 3-5 years
 – For the life of the item

• Waiting until the item is bad does not provide enough time to buy more
 – 2 to 6 year cycle time from need to field
The Solution: Predictive Stockpile Management

Failure Mode and Mechanism + Sensors + Mode-Mechanism Model + CONOPS & Data Repository = Predictive Stockpile Management
An Example…

- Identify Failure Mode
 - What fails?

- Identify Failure Mechanism
 - What causes the failure?

- Determine rate of degradation
 - How long does it take to fail?

- Correlate and synthesize
 - When will it fail?
 - When should I produce more?
 - Which items are at risk?
 - Which items are not?
Elements of the ASRP:

- Design for Storage Life
 - Predictive Engineering
- Ammunition Surveillance Program
- Function (Reliability) Testing
- Laboratory testing program
Storage Life Predictions

- **Proactive (Development Items)**
 - Analogy based analysis to determine at risk, life limiting items
 - Accelerated life testing to predict storage life
 - Controlled
 - Uncontrolled
 - Determine design changes or mitigations to extend life

- **Reactive (Fielded Items)**
 - Perform function testing per ASRP Plan
 - Analysis of variance
 - Age
 - Lot
 - Manufacturer
 - Storage location/type
 - Design revisions
 - Detect reliability degradation trends
 - Predict breach of lower reliability threshold

Predictive Technology (ALT) can be used for fielded items also
Initiatives

• Policy – Army Regulations and local installation application policies

• Process – Lean Six Sigma Green Belt Project to refine methods

• Data - Predictive Summary Report and Benchmarking

• Application – Synergistic programs addressing multiple items or classes of items

Goal – Enable Predictive Stockpile Management
ASRP Policy

• Memo documenting policy requirements
 – Ammunition Stockpile Reliability Program
 • AR 702-6
 – Ammunition Surveillance
 • AR 740–1, AR 702–12, and AR 700-142
 – Required at time of MR

• Key responsibilities of PM and ARDEC
 – Baseline performance and reliability
 – Identify life-limiting components
 – Identify acceptable limits of degradation
 – Design and build unique inspection/test equipment
SSGB Project

Objectives:
- Develop process map for creation of ASRP Plan
- Improve timeliness and value of the ASRP Plan and its execution
 - Completed at time of MR
- Improve quality of plans to include:
 - Greater use of predictive engineering and accelerated life testing
 - More item and failure mode unique testing and inspections
 - Add Ammunition Peculiar Testing Equipment
 - Add detailed test procedures
- Institute Configuration Management
 - Approval routing
 - Revision Management
 - Document Maintenance
 - Define how ECP and MIF information is added to ASRP Plan

Approach:
- Define current process
- Measure and Analyze results of current process and adherence to AR
- Improve and Lean process to provide more value and synergy across ammo classes
- Institute Controls to ensure continual improvement
Unified ASRP Approach

Predictive Testing

Function Testing

Lab Testing

Ammunition Surveillance
Practical ALT

HALT → Define: Failure Mode

DoE based ALT → Measure: Sensitivity to Stresses

ANOVA → Analyze: Correlation to CI’s

FRACAS → Improve: Design out if possible

Sensor & Lab test → Control: Monitor stresses & CI’s

CBM for Ammo

Predictive Testing

Function Testing

Lab Testing

Ammunition Surveillance

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.
• Compilation and update of tests and analyses capturing environmentally susceptible items and components

• Sources:
 – ASRP function testing
 – ASRP surveillance inspections
 – DIF/MIF reports
 – FAT/LAT results
 – Predictive Engineering/Aging Studies

• Motivation
 – Identify common causes and risk for LCMC managed items
 – Provide repository of data to expedite MR process and avoid duplication of effort
 – Determine candidates for further investment and investigation
 • Aging program
 • In-situ sensing
 • Telemetry
 • Additional functional, lab, or surveillance sampling
Sensor and Database Project

- Investigate COTS sensors
 - Literature review and continued work with UMD Consortium
 - Identify customer requirements (cost, size, IO, resolution)
 - Classes of sensors
 - Cheap and simple for cheap and simple
 - Ensure CBA/ROI is favorable

- Qualify one or more from each class
 - Durability - Sensor can’t fail before round
 - Accuracy – Sensor data can’t drift with time
 - Interoperability (E3) – Eliminate interference/safety concerns

- Data Analysis and Warehouse
 - Open Architecture
 - Tailorable
 - Self-definable models

- Application guidance
 - Common I/O and data collection methods
 - Coordination with JMC QASAS
Value of Temperature Data

Life Estimate between 2 and 22 years

Hand Held Signal Device

Failure Predictable with Only 1.7% escapes
- Reliability Characterization of SMT components in temperature cycling environment
- Predictive algorithm development to identify incipient failures
- Demonstration sensor(s) from Low Cost sensor program (if funded)
Questions?