Power Conversion Technologies for Improved System Performance

Kaz Furmanczyk
Crane Aerospace & Electronics

2009 Join Service Power Expo
May 4-7, 2009 – New Orleans, Louisiana
Introduction

- Background
- New Challenges for Power Conversion Equipment on Airplanes
- Review of Technology Options for Powering Motors that Meet Aerospace Requirements
- Implementing Modeling and Simulations for Design Optimization - Example
- Conclusions
- Summary of Hardware Performance
Traditional constant frequency power sources (400 Hz) on airplanes are being replaced by variable frequency generators (typically 360-800 Hz)

Pneumatic and hydraulic systems are being replaced with electrical devices – most of which are using electric motors

More electrical equipment is being added to airplanes – power quality becoming an issue
This creates new challenges, which need to be resolved:

Challenge #1 – Speed of inductive motors varies with frequency

- solution: replace inductive motors with DC brushless motors
 - However, direct rectification of AC into DC generates high current distortion – exceeding acceptable power quality limits

Challenge #2 – Find effective solution for converting AC into DC with good power quality
Power Quality

Effect of power conversion is reflected back onto the aircraft AC bus.

The smoother the current waveform ---> the better the “Power Quality”

18-pulse, 30-pulse and active PFC approaches represent good power quality.
Power Quality

- Power quality requirements from leading OEMs (examples):
 - Boeing: 787B3-0147
 - Airbus: AMD-24

- Recent, DO-160, Rev. F Document imposed power quality requirements for aerospace products powered from an aircraft AC power system

- The most significant requirement is on restriction of individual harmonics generated by user equipment rated 35 VA or more

- The harmonic limits requirement makes direct rectification obsolete
 - Practically, all motor drivers, which are using direct rectification need to be replaced or upgraded
 - Majority of traditional TRU units can not meet new current limit requirements – improved designs or larger filters are needed
DO-160F Current Harmonics Limit

Each current harmonic, up to 40th harmonic has specified limit

<table>
<thead>
<tr>
<th>Harmonic Order</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>3rd, 5th, 7th</td>
<td>0.02 I₁</td>
</tr>
<tr>
<td>Odd Triplen Harmonics (h = 9, 15, 21, ..., 39)</td>
<td>(I_h = 0.1 \frac{I_1}{h})</td>
</tr>
<tr>
<td>11th</td>
<td>0.1 I₁</td>
</tr>
<tr>
<td>13th</td>
<td>0.08 I₁</td>
</tr>
<tr>
<td>Odd Non Triplen Harmonics 17, 19</td>
<td>0.04 I₁</td>
</tr>
<tr>
<td>Odd Non Triplen Harmonics 23, 25</td>
<td>0.03 I₁</td>
</tr>
<tr>
<td>Odd Non Triplen Harmonics 29, 31, 35, 37</td>
<td>(I_h = 0.3 \frac{I_1}{h})</td>
</tr>
<tr>
<td>Even Harmonics 2 and 4</td>
<td>(I_h = 0.01 \frac{I_1}{h})</td>
</tr>
<tr>
<td>Even Harmonics > 4 (h = 6, 8, 10, ..., 40)</td>
<td>(I_h = 0.0025 I_1)</td>
</tr>
</tbody>
</table>
Existing Approach

- Traditionally, 6-pulse rectification provides DC power for motors
- However, input current harmonics exceeded DO-160F limits
- New - more advanced technology - is required to convert AC into DC

Harmonics

THD = 30.7%
Technology Options

The following power conversion technologies are capable of meeting the new power quality requirements:

- High frequency switch mode conversion (active conversion)
- Multiphase power conversion (passive conversion)
- Other harmonic correction techniques, based on:
 - Harmonic injection
 - Active filter implementation
High Frequency Switch Mode Conversion

6-pulse rectifier being replaced by 3-phase switch mode converter

Input Current meets power quality

THD < 5%
High Frequency Switch Mode Conversion

Two practical solutions, based on:

Boost Converter

Regulated DC Output Voltage:
- 320 Vdc minimum (with 115 Vac input) - for boost converter
- 230 Vdc maximum (with 115 Vac input) - for buck converter

Meets Input Current Harmonic Limits
Soft Start Ability
Power Factor: 0.994–0.998
Efficiency: 95–97 %
Multiphase Power Conversion

Input Current meets power quality

THD = 6.4%

6-pulse rectifier being replaced by ATRU (18-pulse)
Output Voltage: 270 Vdc nominal (with 115 Vac input); passive regulation
- Meets Input Current Harmonic Limits
- Power Factor: 0.980-0.990
- Efficiency: 96-98%
- Simplicity: low parts count; no need for energy storage components (C or L)
Design Example - Multiphase Power Converter

- 18-pulse autotransformer topology meets new harmonic limits – if designed correctly

- Some of available 18-pulse autotransformer options:

 ![Option A](image1)
 ![Option B](image2)
 ![Option C](image3)

 Autotransformer converts 3-phase input voltage into 9-phase output voltages (spaced 40 degrees from each other)

- It is almost impossible to analyze topology and optimize design without converter modeling and running simulations

 ![Current waveforms](image4)

 Current waveforms in transformer windings become very complex
Design Example - Multiphase Power Converter

18-pulse ATRU
Non-Linear Model
Design Example - Multiphase Power Converter

Transformer construction challenges:

- Choosing winding material (copper, aluminum)
- Selecting conductor shape (round wire, square wire, foil)
- Defining and optimizing core geometry and aspect ratio
- Optimizing interactions between windings (leakage inductance, proximity effects)

△ It is not practical to build and test each considered option
△ Therefore, design iterations and optimizations need to be performed on computers
Design Example - Multiphase Power Converter

Transformer Construction Optimization:

1. Define core geometry and winding configuration
2. Convert geometry and materials into electrical parameters
3. Simulate performance
4. Adjust and optimize

- Core Losses
- Winding Losses
- Leakage Inductance
- Regulation
Design Example - Multiphase Power Converter

Simulate converter performance and verify power quality

Auto transformer Configuration

Input Current Waveforms

Design
First Completed Design
Power Quality not met; several current harmonics exceed limits

Interactive Optimization

Optimized Design
All current harmonics within specification plus margin

Fabrication

Completed Hardware
Performance correlates very closely with optimized design

©Crane Aerospace and Electronics
Performance Summary of Existing Hardware

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Power</td>
<td>4.5 kW</td>
<td>1.6 kW</td>
<td>8.6 kW</td>
<td>15 kW</td>
<td>5 kW</td>
</tr>
<tr>
<td>Input Voltage (nominal)</td>
<td>230 Vac</td>
<td>115 Vac</td>
<td>115 Vac</td>
<td>115 Vac</td>
<td>460 Vac</td>
</tr>
<tr>
<td>Output Voltage (nominal)</td>
<td>270 Vdc</td>
<td>270 Vdc</td>
<td>320 Vdc</td>
<td>400 Vdc</td>
<td>460 Vdc</td>
</tr>
<tr>
<td>Power Quality</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Meeting DO-160E</td>
<td>Yes 11%</td>
<td>Yes 6.4%</td>
<td>Yes 3.3%</td>
<td>Yes 3%</td>
<td>Yes 3%</td>
</tr>
<tr>
<td>Current THD Current Waveform</td>
<td>Picture A</td>
<td>Picture B</td>
<td>Picture C</td>
<td>Picture D</td>
<td>Picture E</td>
</tr>
<tr>
<td>Power Factor</td>
<td>0.986</td>
<td>0.992</td>
<td>0.998</td>
<td>.990</td>
<td>.990</td>
</tr>
<tr>
<td>Output Ripple</td>
<td>15 Vp-p</td>
<td>12 Vp-p</td>
<td>7 Vp-p</td>
<td>3 Vp-p</td>
<td>10 Vp-p</td>
</tr>
<tr>
<td>Efficiency</td>
<td>95%</td>
<td>96%</td>
<td>97%</td>
<td>97.5 %</td>
<td>96 %</td>
</tr>
<tr>
<td>EMI Filter</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Size</td>
<td>6” x 4.6” x 3”</td>
<td>7” x 2.6” x 2”</td>
<td>9” x 6” x 3.4”</td>
<td>11” x 15” x 3”</td>
<td>13.7” x 3.6” x 4”</td>
</tr>
<tr>
<td>Weight</td>
<td>5.5 lb</td>
<td>3.1 lb</td>
<td>10.2 lb</td>
<td>20.8 lb</td>
<td>6.7 lb</td>
</tr>
</tbody>
</table>
Input Current Waveforms of AC/DC Converters

A) Passive, 12-pulse

B) Passive, 18-pulse

C) Passive, 30-pulse

D) Active, Boost

E) Active, Buck

©Crane Aerospace and Electronics
Comparison between Active and Passive Approaches

<table>
<thead>
<tr>
<th></th>
<th>Active Harmonic Reduction (Switch Mode)</th>
<th>Passive Harmonic Reduction (Multi-Phase)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltages</td>
<td>115 or 230 Vac</td>
<td>115 or 230 Vac</td>
</tr>
<tr>
<td>Output Voltages</td>
<td>150 - 230, 320 – 600 Vdc (without use of additional DC/DC converter) Is regulated over variations in line and load</td>
<td>150 – 600 Vdc (set by adjusting transformer turns ratio) Varies with line voltage and load</td>
</tr>
<tr>
<td>Harmonics</td>
<td>THD 3 – 7%</td>
<td>THD 3 – 12% (dependent on topology)</td>
</tr>
<tr>
<td>Power Factor</td>
<td>0.980- 0.998</td>
<td>0.980 – 0.998</td>
</tr>
<tr>
<td>Output Ripple</td>
<td>Dependent on output filter</td>
<td>Dependent on output filter</td>
</tr>
<tr>
<td>Efficiency</td>
<td>95 – 97%</td>
<td>96 – 98%</td>
</tr>
<tr>
<td>Soft Start</td>
<td>Available with existing design</td>
<td>Needs to be added on</td>
</tr>
<tr>
<td>Over-current Protection</td>
<td>Available with existing design</td>
<td>Needs to be added on</td>
</tr>
<tr>
<td>Cooling Method</td>
<td>Conduction, liquid or air</td>
<td>Conduction, liquid or air</td>
</tr>
<tr>
<td>Advantages</td>
<td>Precise output voltage regulation</td>
<td>Simplicity</td>
</tr>
<tr>
<td></td>
<td>Output voltage can be adjusted</td>
<td>No need for energy storage devices or control</td>
</tr>
<tr>
<td></td>
<td>Built in soft-start</td>
<td>High reliability</td>
</tr>
<tr>
<td></td>
<td>Built in over-current protection/current limiting</td>
<td>Typical MTBF - 250,000 hours</td>
</tr>
<tr>
<td></td>
<td>The same unit can operate at 400Hz or 60Hz</td>
<td>Robust – accepts high overloads</td>
</tr>
<tr>
<td></td>
<td>Significantly lower weight at 60 Hz</td>
<td>Lower weight at 400 Hz applications</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower cost</td>
</tr>
<tr>
<td>Disadvantages</td>
<td>Lower reliability</td>
<td>No output voltage regulation</td>
</tr>
<tr>
<td></td>
<td>High energy storage capacitor needed</td>
<td>Input voltage variations are passed to the output, plus about 4% voltage drop from no load to full load</td>
</tr>
<tr>
<td></td>
<td>(Aluminum electrolytic)</td>
<td>Additional DC/DC converter is needed to obtain full voltage regulation</td>
</tr>
<tr>
<td></td>
<td>No overload capabilities</td>
<td>Presence of inrush current - basic design</td>
</tr>
<tr>
<td></td>
<td>Higher cost</td>
<td>Additional circuitry is needed to shape input current</td>
</tr>
<tr>
<td></td>
<td>Gap in output voltage setting -</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Additional DC/DC converter is needed to obtain Voltage between 230 Vdc and 320 Vdc</td>
<td></td>
</tr>
</tbody>
</table>
Existing Hardware Examples

1 kW Converter - 115Vac/270Vdc

5 kW Converter - 230Vac/540Vdc

8 kW Converter - 115Vac/300Vdc (Fan cooled)

15 kW Converter - 115Vac/270Vdc

135 kW Converter - 230Vac/540Vdc (Liquid cooled)
Conclusions

- Demands for electrical power on today’s airplane are increasing
- Traditional, constant frequency power systems are being replaced by variable frequency
- DC brushless motor becoming the motor of choice on new airplanes – it requires DC power to operate
- New power conversion technologies are needed to fully meet recent power quality requirements – creating new challenges
- Effective simulation and optimization tools are critical in successful development of new generation aerospace power converters
- Two groups of technologies, capable of meeting new power quality requirements, are emerging: passive and active approach
- When unregulated DC voltage can be tolerated, multiphase conversion has a good fit in aerospace applications
Crane Aerospace & Electronics, Power Solutions, designs, manufactures and supports products and capabilities via our brands: ELDEC, Interpoint and Keltec. We provide both Standard Power Products and Custom Power Products.

- Standard Power Products consist primarily of our DC-DC converter and filter modules sold under the Interpoint brand.
- Custom Power Products consists of our custom and semi-custom low voltage and high voltage power products and subsystems.
- Our Power solutions meet the current and future needs of our customer’s applications:
 - **Power for Electronic Systems** – Our full range of standard and custom products delivers compliant product performance, low cost of ownership and ease of integration thereby providing the lowest risk comprehensive solutions (Ex. Embedded low voltage power supplies)
 - **Power Distribution** – Low weight, high power quality and high efficiency platform power conversion, management and distribution. We can provide significant weight and volume savings through integrated power conversion, bus control and power control. (Ex. TRUs, ATRUs, etc.)
 - **Electronic Warfare & Radar** – Solid-State or traveling wave tube (TWT) based low/high voltage, high power products and subsystems for mission critical defense platform and payload applications (Ex. TWT amplifiers, high power / high voltage power supplies, etc)
 - **Energy Storage** – Delivering safe integration of energy storage devices into electrical systems while providing the longest maintenance interval and service life at the lowest weight. (Ex. Battery systems, battery charger/controller, batteries, etc.)
 - **Motor Power Conversion and Control** – High power quality ac-dc converters as standalone solutions or as part of an integrated electric drive motor package (Ex. ATRUs, active PFC converters, etc.)

Information: www.craneae.com

Technical assistance: Kaz Furmanczyk, Principal Engineer
- Tel. 425-743-8106; e-mail: Kaz.Furmanczyk@crane-eg.com

©Crane Aerospace and Electronics
Questions?

- Conversion, protection, monitoring
 - Milliwatts to megawatts
 - Custom and off-the-shelf
 - Module, SRU, LRU, integrated sub-system