Ni-Cd Battery Separator Improvement
Based upon Mr. Paul Scardaville’s research and Crane testing

DSCR and NAVAIR Sponsored program to develop a Ni-Cd battery separator system that will increase battery safety and life to highest levels
Ni-Cd Battery Separator Improvement

2009 Joint Service Power Expo
New Orleans, LA
6 May 2009
OUTLINE

• Background: Problems that prompted program

• Tests:
 – Gurley airflow (time to pass air volume)
 – Rewet-ability in KOH (soak15%, rewet 30%)
 – Temperature-Rise & Float Charge (TR&F)

• Comparisons: Results of TR&F
 – Wetting agents
 – Absorbers
 – Gas barriers
Background

• Production Battery Performance began to decrement
 – Celgard increased average porosity of gas barrier by tightening tolerance toward high porosity limit
 – Kimberly-Clark (KC) dropped melt-blown polypropylene (mbPP) absorbers.*
 – As manufacturers reached end of their KC supply, battery performance decrement accelerated.
 (Reason: “Wayfos A” no longer available)
Type M81757/16, KC mbPP Absorber

• Celgard gas barriers with Celgard standard wetting agent
 – One with 37 Gurley-second (G-s) porosity
 – One with Celgard 3400 (24 G-s)

• Both performed essentially same in TRF & Life Cycling.

• No difference in post life capacities
Sulfur Contamination

Sulfur in electrolyte was believed to cause a permanent decrement in capacity.

Source of the sulfur was determined to be from water-soluble dispersants that were used to apply the wetting agent to the mbPP absorber.
Surfactants Suspected

- Dissections exhibited separator dryout and poor rewet ability in production batteries made after the 1980’s
- Investigated why wetting agent appeared to leaving gas barrier
- Determined Celgard Inc was applying a wetting agent that was fugitive
Surfactant Comparisons

Performed a wetting agent rewet-ability using membrane with Celgard’s & 2 candidate W.A.s* from Mr. Paul Scardaville’s search

Test: Samples soaked in 15% KOH solution, air dried and returned to 30% solution for rewet.

Results of soak durations to 12 months

A) Celgard 3400: Lost rewet ability in 1 day
B) Surfonic L24-4 (alcohol/ether): Rewet
C) Deforest HP-739* (anionic ester): Rewet

*HP-739 is a clone of 1970-2000 Wayfos A & has same CAS #
Baseline Testing

Type M81757/16 batteries with Celgard 37 G-s porosity gas barrier

Separators:

#1: Manufacturer’s absorber & gas barrier with fugitive wetting agent (N3400G1-P)
#2: Grafted H&V MBPP and N3400G1-P
#3: Grafted H&V MBPP and nonsoluble wetting agent on gas barrier, DePHOS HP 739 (CAS # 12645-31-7)
Baseline Conclusions

• Porosity in 20-40 G-s range has large impact on charge stability*

• Wetting agents
 – Nonionic (Huntsman) was unusable
 – Fugitive afforded no safety*
 – Dispersant residues were generally harmful

• Coated & grafted absorbers have same performance

*Influenced by wetting agent transfer
TR&F Cycling Test
Type M81757 35Ah Batteries

• Initial charge: 2-Step CC with water addition

• TRF cycles:
 – Stabilize battery in Chamber @ 120ºF
 – 315A discharge to 14.4V or 5 minutes
 – 24-hour CP @ 28.5V
 – Repeat -315A and CP charges (M–F)
 – Sat AM: Rest open circuit and return to amb.
 – Sun PM: Repeat sequence above
 – Water additions: As needed
Effects of Gas Barrier Porosity and Applied W.A. on Safety

• 35Ah Batteries using Woven Nylon absorber and different gas barriers
 – 3400: 24G-s porosity and fugitive wetting agent
 – A519: 37G-s porosity & insoluble wetting agent DePHOS HP 739 (CAS # 12645-31-7)
Charge Current TR&F Cycling
W.N. & A519 VS. W.N. & 3400

Charge Current (Amperes)
Charge Time (Hours)

Distribution Statement A: Approved for Public Release; Unlimited Distribution
Battery Temperature TR&F Cycling
W. N. & A519 VS. W. N. & 3400

Charge Time (Hours)

Degrees Fahrenheit

- A519 T1
- A519 T2
- A519 T3
- 3400 T1
- 3400 T2

Distribution Statement A: Approved for Public Release; Unlimited Distribution
Wetting Agent Mobility
Effect on gas barrier performance

• Gas barrier (N3400G1-P)
 – Porosity: 37G-s
 – Wetting agent: Fugitive - Celgard proprietary

• Absorbers
 – Grafted mbPP
 – Coated mbPP (CAS # 12645-31-7)
TR&F Charge Current (PL)
Grafted Absorber, N3400G1-P

Charge Current (amps)

Charge Time (Hours)

- Current 1
- Current 2
- Current 3
TR&F Charge Current (PL)
Coated Absorber, N3400G1-P

Charged Time (Hours)

Charge Current (amps)

- Current 1
- Current 2
- Current 3
TR&F Charge Temperature (PL)
Grafted Absorber, N3400G1-P

Degrees Fahrenheit

Temp #1
Temp #2
Temp #3

Charge Time (Hours)
TR&F Charge Temperature (PL)
Coated Absorber, N3400G1-P
TR&F Conclusions

• Gas barrier porosity does not control charge stability if wetting agent is absent.

• Anionic wetting agent (CAS 12645-31-7) on absorber “caused" charge stability. It appears W.A. can transfer from absorber to the gas barrier.

• The wetting agent in the pores IS the gas barrier.
How Good is Good?

- Type M81757/16 battery with GSS was subjected to continuous TR&F cycling

- Results:
 - Battery’s charge stability remained completely stable throughout test.
 - Testing was terminated after 226 days on test and completing 150 TR&F cycles
TR&F Cycling Comparisons
EOC Currents

EOC Current (Amps)

/16wGSS
/16wGF&3400
/9-3wKC&3400*

Cycle Number
TR&F Cycling Comparisons
EOC Battery Temperatures

 Degrees Fahrenheit

 Cycle Number

/16wGSS
/16wGF&3400
/9wKC&3400

Distribution Statement A: Approved for Public Release; Unlimited Distribution
Battery Temperature
Individual TR&F Cycles
Specifying a Separator System

• Wetting agent
 – Anionic
 – Unaffected by charge V using special test cell
 – Insoluble in electrolyte
 – Dispersant must leave no residue that can disperse into electrolyte
Specifying a Separator System

• Gas Barrier
 – Polyolefin membrane
 – Thickness: 1mil ± 0.1 mil
 – Maximum Resistance: 18-milliohm-sq. inch
 – Porosity (35 to 40 G-s)
 • High enough for low resistance
 • Low enough to keep wetting agent in pores.
Specifying a Separator System

Absorber:

- Hydrophilic (W.A. coated preferred)
- Highly absorbent
- High tortuosity for better protection (mbPP)
- Weight: Governed by performance
Any Questions?
Speaker POC Info

Barry Newman
Mechanical Engineer
Crane Division, Naval Surface Warfare Center (NSWC Crane)
Global Deterrence and Defense Department
Power and Circuit Board Technologies Division
Power Systems Science and Engineering Branch
Code GXSL, Bldg. 3287E
300 Highway 361
Crane, IN 47522-5001
Phone 812-854-4087, Fax 812-854-3589
Email: baird.newman@navy.mil