Solid State Power Control in Smart Power Management & Distribution

William M. Thorp
Senior Electrical Engineer, Data Device Corporation
Introduction of SSPC on Military Vehicles

- Challenge: Reliability Impact of Thermal Mechanical Breakers and Relays
 - Wear-out Mechanism
 - Fused or Oxidized Contacts
 - Uncontrolled Turn-on and Turn-off Impacting the Load
- Solution: Solid-State Power Controllers
SSPC Basic Functionality

- Provides the Same Protection of Harnesses and Loads as Thermal Breakers, but with a Solid-State Circuit
- Control Turn-On to Drive Large Capacitive Loads
- Control Turn-Off to Prevent Spikes on Inductive Loads
- Minimize EMI

I²T Curve

Controlled Gate

Gate Control

28 VDC in

28 VDC out
Ground Vehicle History

- **M1A2 Abrams Tank**
 - SSPC Inserted in 1988
 - >200K Nodes Installed
- **M2A3 Bradley Fighting Vehicle**
 - SSPC Inserted in 2004
 - >200K Nodes Installed
- **SSPC Planned for...**
 - M88A2 Hercules Tank Recovery Vehicle
 - Paladin/FAASV M109 Self-Propelled Canon
 - MULE
 - JLTV
 - M-ATV
Power Distribution Challenges

New Challenges:

- Military Vehicles Require More Power, but have Limited Generation and Storage Capability Due to Weight and Size Constraints
- Power Systems are Inflexible, Making it Difficult to Configure Vehicles for Varying Missions

Solution: Smart Solid State Power Controllers

- Network Control
- Autonomous Monitoring
- Programmability
Power Control Architectures

- High Density Load Centers
 - One or More Power Distribution Units Handling Multiple Vehicle Loads
 - Implemented Using Multi-Channel SSPC

- Point of Load
 - SSPC Modules Located Near Loads

- Design Considerations
 - Cost
 - Space
 - Load Mix
 - Flexibility
Power Distribution Example

- Loads
- Operator's Control Panel
- Point-of-Load RPC
- Control Bus (e.g. CANbus)
- Alternator and Battery
- Multi-Channel RPC
- Light
- FLIR
- VHF Radio
- Gyrocam
- CROWS
- Satcom
Smart SSPC Capabilities

- Network Control (i.e., CAN SAE J1939, Ethernet)
 - State: On/Off
 - Status: Enabled/Tripped
 - Set Current Rating
 - Battle Override
- Enables...
 - Crew Offloading, Operating Mode Selection
Smart SSPC Capabilities (Cont.)

- Network Monitoring of Load Health/Status
 - Get Output Channel Voltage and Current
 - Get SSPC Board or Load Temperature
 - Voltage, Current and Temperature Alarms

- Enables...
 - Real-Time Power Management
 - E.g., Load Shedding
 - Situational Load Profiles
 - Diagnostics
 - Prognostics
Smart SSPC Capabilities (Cont.)

- Adaptability Features
 - Wide Channel Trip Programming Range
 - Channel Paralleling
 - TARDEC Power Management API
- Enables...
 - Reduced Development Time and Cost
 - Reduced Part Number Count (i.e., Common Modules)
SSPC Design Challenges

- EMI
- Thermal Management and Dissipation
- Ruggedization and Reliability
- Robustness
 - In-rush Current
 - Transient Suppression
 - Connectors
 - Immune to Sympathetic Tripping
Technology Trends

- Diagnostics/Condition-Based Maintenance
 - Arc Fault Detection
 - Fault Location
 - Data Logging
- Increased Power Densities
 - Higher Current Density SSPC's
 - Move to 610Vdc Primary Power Distribution
- Silicon Carbide FETs
Questions