Information Technologies for Logistics Operations: Impact on People, Processes & Readiness

A Logistics PM Perspective

9 April 2009

William (Bill) Kanotz
Director, Logistics Programs
Surveillance Systems
Northrop Grumman Electronic Systems
Operationalizing Information Technology

Progress Is Being Made...Don’t wait for perfection

People ➔ Expanding Timely Sustainer Knowledge
- Not Data, Not Just Information ➔ Focused Knowledge

Processes ➔ Integration Yields Agility & Adaptability
- Design-Manufacturing & Now Logistics Tools Enhanced & Integrated

Readiness ➔ Affordable Early & Sustained Operations
- Reduced Design to Field Cycle with Inherent Supportability

Intermittent Serial Communication Evolving to Globally “As Needed” Knowledge
The Changing Logistics Support Environment

Integrated Acquisition and Life Cycle Sustainment Strategy:
- Processes, Toolsets and Knowledge Management

- Fielded Product Cycle Times are Reduced and Tech Refresh is More Rapid
- Flexible, Agile & Reconfigurable Forces Require Rapid & Adaptive Support
- Performance Based Life Cycle Product Support Reduces Sustainment Costs
- Improved System Reliability and Early Field Reliability Projections Require Legacy / New System Sustainment Data and Feedback Loop
- Risk and Configuration Change Management is Critical

- **Warfighter Requirements ➔ Sustainment Goals & Metrics**

Knowledge + Metrics = Focused Support ➔ Enables Operational Sense and Respond Logistics
PBL MEASURES OF SUCCESS

Warfighter Requirements Establish Sustainment Metrics

Mission Capable Rate Goal

Non-Mission Capable Supply Goal
Non-Mission Capable – Maintenance Goal

H/W Reconfigure Time Hr

MTBSA YY Hrs Goal

Re-Supply Rate XX Hr

Reliability Goal

Mean Time To Repair Z.Z Hr

MaxTTR A Hrs

System and Support Performance
Full Mission Capability Throughout Life Cycle
Metrics Management Requires Accurate Timely Data

- Demonstrating Metric Compliance Requires Accurate Maintenance Data
- Improving Logistics Performance Implies Contractor Control over Supply Support & Configuration

- Organizational Level Maintenance Data
- Depot Level Maintenance Data
- Fielded Reliability Data
- Supply Support Data
- Configuration Control Data

Requires Comprehensive Data Management System
Integrated Acquisition and Life Cycle Sustainment

Best of Best Practices/Tools

Industry/Government

Standards

S1000D, S2000M, S3000L, S4000M

Integrated Digital Environment

Acquisition & Sustainment Evolution is Accelerating
Industry has Integrated Design-Supply Chain-Manufacturing; and Now Improving the Sustainment Via Similar Processes and Tools
IDEs – Architectures Vary Across Team-Mates & Programs

Internal Contractor Infrastructure Linkage

Program/Partnership Linkage & Data Security

No Single IDE: A Cooperative IDE Family
Observations and Past Experience

Grow towards Perfection: Generally Not Timely or Affordable to Create Emerald City

- 80% Solutions To Provide Knowledge at Lower Cost
- The Goal of Operationalizing IT should Not be to generate the biggest database with real time access of All by ALL
- Don’t rapidly evolve from clean process flows to spiders webs to rats nests
- Need Collaboration by Tier 1/2/3 Contractors / Government via Consortiums and Public Private Partnerships

The Sustainment Community is Experienced: Operationalizing IT WILL Enhance Knowledge to Reduce Risk & Cost for Agile Life Cycle Sustainment