

Pierre Pelletier, Isabelle Laroche, Daniel Lavigne, Frank Cantin: GD-OTS Canada

Patrick Brousseau: DRDC-Valcartier

Virgil Fung: BAE Systems OSI

© 2009 GENERAL DYNAMICS Ordnance and Tactical Systems-Canada Inc.

Introduction and Background

- ➤ Until recently, Insensitive High Explosive (IHE) formulations used in Insensitive Munitions (IM) were mainly cast-cured or pressed formulations.
- ➤ New developments in melt-poured IHE and work that showed that they could also have good IM properties revived the interest for the type of explosive processing.
- ➤ GD-OTS Canada (formerly SNC TEC) has more than 60 years experience with TNT-based formulations, as well as some experience with PAX-21, PAX-25 and PAX-34 DNAN-based formulations.
- The objective of this presentation is to present the tests performed on two dinitroanisole (DNAN) based formulations (OSX-7 and OSX-8) as well as the results obtained.

Formulations Tested

- > OSX-7: DNAN, NTO, RDX
- > OSX-8: DNAN, NTO, HMX
- > Reference formulations:
 - Composition B: 59.5% RDX, 39.5% TNT, 1.0% wax
 - PAX-34: DNAN, NTO, TATB, HMX
- > Components:
 - DNAN: Dinitroanisole
 - NTO: 3-nitro-1,2,3-triazol-5-one
 - HMX: Octogen
 - RDX: Hexogen
 - TATB: 1,3,5-triamino-2,4,6-trinitro benzene

- > Viscosity and particle size distribution of the solids are important characteristics for melt-pour formulations.
- ➤ A high viscosity can impair mixing and pumping operations and can lead to more air entrapment during loading.
- ➤ A low viscosity can also affect air entrapment and enhances solid particles settling in the equipment and in the loaded shell bodies.
- GD-OTS Canada series of characterization tests are used to evaluate the formulation viscosity and the tendency of its solid particles to settle.

- ➤ The test is performed using a double jacket heated pot containing 1.5 kg of material with a Brookfield viscometer equipped with a "A" T-shaped spindle rotating at 20 RPM.
- > Viscosity measurements taken after 0, 7.5 and 15 minutes.
- ➤ In between measurements, the material is allowed to settle freely, without being agitated.
- ➤ The test temperature is maintained throughout the test duration.

> Viscosities measurements

Formulations	OSX-7	OSX-8	PAX-34	Comp B
Test temperature	98°C (208°F)	98°C (208°F)	98°C (208°F)	93°C (199°F)
Initial viscosity (cP)	3040	1440	880	700-1000
Viscosity after 7.5 minutes (cP)	3286	1520	1040	1000-1400
Viscosity after 15 minutes (cP)	3440	1680	2720	2000-2400

- > The viscosity test is immediately followed by the sedimentation test.
- > The material in the heated test pot from the viscosity test is poured onto a pan and observations are made on
 - The way the material flows
 - The amount of material remaining in the test pot
 - The way the material places itself on the pan
- OSX-7: appears homogeneous and flows steadily.
- OSX-8: Visual segregation of constituents visible during pouring. It is very liquid at first and more viscous towards the end.

- > With melt-poured formulations, controlled solidification is required to prevent formation of defects in the cast.
- ➤ The thermal behaviour is studied using a split mould cylinder loaded with the formulation. The temperature profile is recorded and material shrinkage is observed.

> OSX-7 − Center Thermocouples

> OSX-8 - Center Thermocouples

- ➤ OSX-7 and OSX-8 cool and solidify much faster than Composition B
- > The charges were removed from the split-mould cylinder and sectioned along their longitudinal axis.
 - Both OSX-7 and OSX-8 shrink less than Composition B. The charge had a large cavity with a diameter of ≈35 mm and other small cavities below the central cavity.

OSX-7 OSX-8

Sedimentation studies

- ➤ Relative percentages of components from samples taken in the thermal characterization cylinder compared to the initial values in the composition.
 - OSX-7 is more viscous leading to less variations
 - Ingredients variations are small compared to composition B

- ➤ 105 mm HE M1 shells were loaded using standard process conditions, but at a higher loading temperature for OSX-7 and OSX-8.
- ➤ A shell body instrumented with 6 thermocouples (located at 1.2, 3.7, 5.7, 7.7, 9.2 and 11.2 in from base) was included to record the cooling temperature profile.
- ➤ Radiographic inspection was performed on the loaded shell bodies.

➤ OSX-7: Formulation solidifies much faster than composition B (60 minutes faster).

> OSX-7: Filling results

- Good filling quality free of major casting defects with only minimal adjustments of composition B parameters and no change to the equipment.
- Strong wall adherence in the bottom section.
- Minimal acceptable cavities to be solved in future DOE studies

➤ OSX-8: Formulation solidifies much faster than composition B and similar to OSX-7 (60 minutes faster)

> OSX-8: Filling results

- Good filling quality free of major casting defects with only minimal adjustments of composition B parameters and no change to the equipment.
- Strong wall adherence in the bottom section.

Mechanical properties

> Mechanical properties in compression

Property	OSX-7	OSX-8	Comp B
Maximum stress (S _m) [MPa]	18.9 ± 1.6	17.8 ± 1.3	8.1 ± 1.8
Strain at maximum stress (e _m) [%]	2.5 ± 0.3	2.5 ± 0.1	2.0 ± 0.3
Young's modulus (M) [MPa]	1708 ± 281	1436 ± 236	840 ± 147
Stress at rupture (S _R) [MPa]	9.5 ± 0.8	8.9 ± 0.7	4.0 ± 0.9
Strain at rupture (e _R) [%]	3.5 ± 0.4	3.3 ± 0.2	2.7 ± 0.1

Variable Confinement Cook-off Test

> VCCT equipment

Variable confinement cook-off tests CINNOVAT

> Results

Composition	0.39mm (0.0155") confinement		1.19mm (0.045") confinement	
	Reaction T°	Reaction type	Reaction T°	Reaction type
OSX-7	182°C (360°F)	V	179°C (354°F)	V
OSX-8	199°C (390°F)	V	199°C (390°F)	V
Composition B	184°C (363°F)	III	183°C (361°F)	III

Summary and Future work

- ➤ Two IM DNAN based melt-pour formulations (OSX-7 and OSX-8) were studied in GD-OTS Canada pilot plant equipment and characterized.
- ➢ Both OSX-7 and OSX-8 exhibit higher melting point, higher viscosity and faster crystallization but the actual GD-OTS Canada modified Meissner process can be used without modification to the equipment and minor adjustments to the parameters to fill projectiles as shown in studies on 105mm M1 filling.
- ➤ Both OSX-7 and OSX-8 settle less than typical composition B.
- ➢ Both formulations present mechanical properties in compression about twice as good as composition B.
- Variable confinement Cook-off Tests indicate that OSX-7 and OSX-8 better withstand cook-off tests (burning vs explosion for the confinement tested)
- Future work planned: Additional characterization studies: detonation properties, physical properties during ageing, LSGT, filling of other projectiles, IM tests.