Novel Plasticizer for IM Compliant Solid Propellants

Ana Racoveanu, David A. Skyler and Benjamin K. Leipzig
Physical Sciences Inc.

Scott K. Dawley
Aerojet

Approved for Public Release
09-MDA-4414 (17 APR 09)

Disclaimer:
"The views, opinions, and findings contained in this report are those of the author(s) and should not be construed as an official Department of Defense position, policy, or decision."

Acknowledgement of Support and Disclaimer
This material is based upon work supported by the Missile Defense Agency under Contract Number HQ0006-07-C-7629. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Missile Defense Agency.
Physical Sciences Inc.

- 36 year-old company of 180 talented scientists, and engineers
- We work in headquarters in Andover, MA, with five satellite locations in the United States
- Acoustics
- Electro-magnetics
- Fluid physics
- Life sciences
- Chemical sciences
- Energetic Materials
- Optical sciences
- Plasma physics
- Space physics
Nitrofurazan Plasticizers (NF)

- Nitrofurazan family offers promise as high energy, good thermal behavior, high density and low sensitivity plasticizers

\[
\begin{align*}
\text{Nitrofurazan ring} & \quad \text{organic group} \\
\begin{array}{c}
O_2N \\
N
\end{array} & \begin{array}{c}
R \\
N
\end{array}
\end{align*}
\]

NF plasticizers

\[
\begin{align*}
\text{nitrato group} & \quad \text{nitramine group} & \quad \text{butyl group} \\
\begin{array}{c}
O_2NO \\
N
\end{array} & \begin{array}{c}
\text{H}_2 \\
C
\end{array} & \begin{array}{c}
\text{H}_2 \\
\text{N}
\end{array}
\end{align*}
\]

Butyl NENA plasticizer

- NF core: heterocyclic ring with high thermal stability, good density
- Organic Group R: capability to functionalize the nitrofurazanic core
- R group variation may generate various categories of NF plasticizers
Background: NF1

- PSI synthesized and characterized NF1 from low cost precursors (30% yield)
- Aerojet performed the energetic and thermal properties testing: promising plasticizer with good energy and good density

<table>
<thead>
<tr>
<th></th>
<th>Density Gm/cc</th>
<th>Decomposition Temperature, ºC</th>
<th>ΔHf, Kcal/mol</th>
</tr>
</thead>
<tbody>
<tr>
<td>NF1 theor</td>
<td>1.620</td>
<td>180</td>
<td>69.5</td>
</tr>
<tr>
<td>NF1 exp.</td>
<td>1.467</td>
<td>180</td>
<td>58.8</td>
</tr>
<tr>
<td>Butyl NENA</td>
<td>1.211</td>
<td>165</td>
<td>-45.55</td>
</tr>
<tr>
<td>TMETN</td>
<td>1.488</td>
<td>158</td>
<td>-105.8</td>
</tr>
<tr>
<td>BTTN</td>
<td>1.520</td>
<td>154</td>
<td>-92.6</td>
</tr>
</tbody>
</table>
Background: NF1 Cont’d

- NF1 properties
 - Low viscosity fluid
 - Moderate volatility

- Measurements show it is insensitive
 - Category “Green” [normal]

<table>
<thead>
<tr>
<th>Hazard</th>
<th>NF1</th>
<th>RDX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact, kg-cm</td>
<td>145</td>
<td>49</td>
</tr>
<tr>
<td>Friction, psi @ drop angle, °</td>
<td>1800 @ 90°</td>
<td>1200@90°</td>
</tr>
<tr>
<td>ESD, J @ 5kv</td>
<td>6.0</td>
<td>0.38</td>
</tr>
</tbody>
</table>
Background: NF1 Cont’d

Onset of weight loss in TGA occurs at a low temperature

Isothermal TGA shows material evaporates after 10 hr at 70°C

Chemical modification to NF1 was required to eliminate volatility
NF1: Background Cont’d

In Differential Scanning Calorimetry (DSC) only endotherms noted due to vaporization – no exotherms
Novel Nitrofurazan Plasticizer: NF2

- Variation of the R group generated various NF classes of nitrofurazanic plasticizers
- R = esteric group: Esteric NF Plasticizers Candidates
- NF2 showed good energy, good density and acceptable volatility
Novel Nitrofurazan Plasticizer: NF2 Cont’d

<table>
<thead>
<tr>
<th></th>
<th>Density G/cm³</th>
<th>Decomposition Temperature, °C</th>
<th>ΔHf, Kcal/mol</th>
</tr>
</thead>
<tbody>
<tr>
<td>NF2 exp.</td>
<td>1.264</td>
<td>176.4</td>
<td>-62</td>
</tr>
<tr>
<td>NF1 exp.</td>
<td>1.467</td>
<td>180</td>
<td>58.8</td>
</tr>
<tr>
<td>Butyl NENA</td>
<td>1.211</td>
<td>165</td>
<td>-45.55</td>
</tr>
<tr>
<td>TMETN</td>
<td>1.488</td>
<td>158</td>
<td>-105.8</td>
</tr>
<tr>
<td>BTTN</td>
<td>1.520</td>
<td>154</td>
<td>-92.6</td>
</tr>
</tbody>
</table>

NF2 has good sensitivity and good thermal properties.

<table>
<thead>
<tr>
<th>Hazard</th>
<th>NF2</th>
<th>RDX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact, kg-cm</td>
<td>300</td>
<td>49</td>
</tr>
<tr>
<td>Friction, psi @ drop angle, °</td>
<td>1800 @ 90°</td>
<td>1200@90°</td>
</tr>
<tr>
<td>ESD, J @ 5kv</td>
<td>6.0</td>
<td>0.38</td>
</tr>
</tbody>
</table>
Novel Nitrofurazan Plasticizer: NF2 Cont’d

In Differential Scanning Calorimetry (DSC) only exotherms were noted: low volatility of NF2
Novel Nitrofurazan Plasticizer: NF2 Cont’d

TGA ISO @ 70°C FOR 16 HRS

NF2 has low volatility: 2% loss in weight at 70 °C for 16 hrs
Novel Nitrofurazan Plasticizer: NF2 Cont’d

Thermal Gravimetric Analysis 1°C MIN

Onset in the weight loss for NF2 starts above 100 °C
Conclusions

- **NF2** has been successfully synthesized and characterized in a 40% overall yield.

- **NF2 synthesis** used low cost precursors and was produced in high purity (>98%).

- **NF2 Testing Results:** insensitive ("green" category material).

- **NF2 showed good thermal properties:** it has good decomposition temperature and low volatility.

- **Additional work will be conducted:** NF2 will be incorporated in propellant samples (work in progress at Aerojet).
Acknowledgments

- We gratefully acknowledge Missile Defense Agency (MDA) Small Business Innovative Research Program for funding this research.

- We are grateful to Dr. Joseph Flanagan, Flanagan Research Company, Stanwood, WA for the insightful reviews of the paper.
Author Contact Information

Dr. Ana Racoveanu
Physical Sciences, Inc.
20 New England Business Center
Andover, MA 01810

Ph: 978-689-0003
Fax: 978-689-3232
Email: racoveanu@psicorp.com