DEVELOPMENT OF INSENSITIVE ALUMINIZED MELT-POUR EXPLOSIVE FORMULATION

NDIA Insensitive Munitions & Energetic Materials Technology Symposium 2009

Virgil Fung *, Brian Alexander
BAE SYSTEMS OSI, Holston Army Ammunition Plant

Wendy Balas
RDECOM-ARDEC, Picatinny Arsenal
Briefing Objectives

- Background
- Program Objectives
- Technical Approach
- Formulation Candidates
- Test Results
- Additional Information
- Summary
Acknowledgement

- RDECOM-ARDEC
 - Ms. Wendy Balas

- BAE SYSTEMS OSI
 - Mr. Curtis Teague
 - Ms. Denise Painter
 - Mr. Matt Hathaway
 - Mr. Alberto Carrillo
 - Ms. Kelly Guntrum
Background

- PAX-28 Formulation Replacement Program
 - Develop new explosive formulation with similar performance and handling characteristic and IM properties to PAX-28
 - PAX-28 Formulation
 - 2,4-Dinitroanisole (DNAN)
 - Aluminum powder
 - RDX
 - Ammonium Perchlorate (AP)
 - PAX-28 is developed as an IM replacement for TNT/Comp B, and is targeted for high blast applications
 - New formulation candidates must be **without** Ammonium Perchlorate (AP)
 - Health Issues (exposure to handlers)
 - Manufacturing Friendliness (moisture control)
 - Environmental Issues (waste treatment)
Program Objectives

- Developed new formulation candidates to meet customer’s requirement
- Conduct lab scale experiment to generate sample for analysis
 - Processibility
 - Hazard Properties
 - Physical / Chemical Properties
- Conduct intermediate scale manufacturing for large scale testing
 - Shock sensitivity - HSAAP
 - Performance (plate dent) - HSAAP
 - Large Scale Blast Performance (GD-OTS)
- Successful candidate may lead to further optimization and ultimately full production scale manufacturing for further evaluation
Technical Approach (1)

1. Performance Prediction Modeling
 - Cheetah performance prediction model used initially to assess candidates with various ingredient combinations:
 - Theoretical Maximum Density (TMD)
 - Detonation Velocity and Pressure
 - Energy Release (kJ/cc explosive)
 - The performance model prediction is only used as a guide to assist selection
 - Aluminized formulations did not behave the same way as conventional explosive in Cheetah prediction
Technical Approach (2)

- 2. Small Scale Manufacturing
 - Candidates are manufactured through a series of mixing trial with various ingredient combinations
 - Processibility will be assessed
 - Efflux Viscosity
 - Sedimentation
 - Physical appearance
 - Thermal and hazard testing
 - DSC / VTS / Impact & Friction Sensitivity
Technical Approach (3)

3. Small Scale Performance Testing
 - To evaluate the blast performance of the candidate, the
 Plate Dent Test is carried out
 - PAX-28 used as the baseline
 - 1” thick × 5” square low carbon steel witness plate
 - Candidates loaded in LSGT tube (no card gap used)
 - One Pentolite Booster pellet per shot
 - Damage on plate (dent) measured and compared to baseline
 - Duplicate charges fired for each candidate

4. Large Scale Gap Test (NOL)
 - To evaluate the shock sensitivity of leading candidates and compare with PAX-28
 - 50% Card Gap for PAX-28 ~ 131 cards (MSIAC Newgates v1.6)
Technical Approach (4)

5. Large Scale Blast Testing
 - To evaluate the large scale blast performance of the candidate
 - Test vehicle & method described in the technical paper “Comparison of Blast Performance of the IM Explosive PAX-28 Variations”, presented at IMEMTS 2007
 - PAX-28 used as the baseline
 - Duplicate charges fired for leading candidate
 - Intermediate scale manufacturing (50 LBS) to supply material for the large scale blast test
 - Further formulation optimization based on the result of the large scale blast test

Photos courtesy of GD-OTS
Candidate Formulations

- 2 candidate formulations were developed for assessment
 - OSX-11
 - DNAN + NTO + Aluminum powder
 - OSX-12
 - DNAN + NTO + RDX + Aluminum powder

- Nitrotriazolone (NTO) used in general to replace AP

- Aluminum powder remains as per PAX-28 to create the blast effect

- Proof of concept – no formulation optimization in this phase
Candidate Formulations

<table>
<thead>
<tr>
<th></th>
<th>OSX-11</th>
<th>OSX-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingredients</td>
<td>DNAN, NTO (two grades) and Aluminum Powder</td>
<td>DNAN, NTO, RDX and Aluminum Powder</td>
</tr>
<tr>
<td>Efflux Viscosity at 96°C</td>
<td>~ 10 seconds</td>
<td>~ 5 seconds</td>
</tr>
<tr>
<td>Impact Insensitive – Naval Impact</td>
<td>0/10 fire at 220cm</td>
<td>2/6 fire at 220cm, no fire at 200cm</td>
</tr>
<tr>
<td>VTS (100°C/48 hours)</td>
<td>N/A</td>
<td>0.06 ml/g</td>
</tr>
<tr>
<td>DSC Onset</td>
<td>233°C</td>
<td>255°C</td>
</tr>
<tr>
<td>Predicted P_{ej} = % of PAX-28 (Cheetah 5)</td>
<td>95.7%</td>
<td>93.0%</td>
</tr>
<tr>
<td>Predicted VOD = % of PAX-28 (Cheetah 5)</td>
<td>96.7%</td>
<td>99.4%</td>
</tr>
<tr>
<td>Predicted Energy Release = % of PAX-28 (Cheetah 5)</td>
<td>96.9%</td>
<td>86.0%</td>
</tr>
</tbody>
</table>
Plate Dent Test Result

- **1. OSX-11**
 - Both charges initiated successfully
 - Dent did not penetrate witness plates fully

OSX-11 Charge 1
NEQ = 262.44g
Dent Depth ~ 0.68"

OSX-11 Charge 2
NEQ = 262.93g
Dent Depth ~ 0.63"
Plate Dent Test Result

- 2. OSX-12
 - Both charges initiated successfully
 - Dent did not penetrate witness plates fully

OSX-12 Charge 1
NEQ = 264.60g
Dent Depth ~ 0.83”

OSX-12 Charge 2
NEQ = 264.37g
Dent Depth ~ 0.87”
Plate Dent Test Result

- 3. PAX-28 as baseline
 - Both charges initiated successfully
 - Dent did not penetrate witness plates fully
 - Dent Depth very similar to OSX-12

PAX-28 Charge 1
NEQ = 254.76g
Dent Depth ~ 0.89"

PAX-28 Charge 2
NEQ = 255.17g
Dent Depth ~ 0.86"
Plate Dent Test Summary

• The dent depth of OSX-12 (0.83” & 0.87”) and PAX-28 (0.89” & 0.86”) were almost identical, suggesting their metal accelerating abilities can be considered as comparable.

• Based on the dent depth, OSX-12 (0.83” & 0.87”) appears to be more powerful than OSX-11 (0.68” & 0.63), although the performance model predicted otherwise (P_{cj} and energy release).

• At this point, all effort was focused on OSX-12 in the next phase of evaluation.
Large Scale Gap Test & Large Scale Blast Test

- NOL LSGT conducted on OSX-12
- Charge Density ~ 1.81-1.82 g/cc
- 50% card gap of OSX-12 = 131 cards (46.6 kbar)
- Shock sensitivity identical to PAX-28

- 30 lbs of OSX-12 manufactured and delivered to GD-OTS for large scale blast test
 - Compare blast performance with PAX-28
 - Test date yet to be determined
 - Test result will determine whether the OSX-12 formulation requires to be optimized
 - More solids can be added due to low viscosity
Additional Information (1)

• OSX-12 possesses good processibility
 • Low efflux viscosity (more solids can be added if necessary)
 • Significantly lower than PAX-28
 • Little sign of sedimentation – even distribution of solids in liquid
Additional Information (2)

- OSX-12 has been evaluated in a 60mm mortar fragmentation test
 - Cast iron mortar body
 - PBXN-5 booster
 - Mortar fully detonated
 - Fragment pattern acceptable
 - Base witness plate
 - Side witness plates (1’ and 2’ away)
 - Fragment size desirable
Additional Information (3)

- OSX-12 has undergone hazard testing in accordance to TB 700 for the application of EX Number
 - Thermal Stability (mass loss at 75°C over 48 hours)
 - 0.03% mass loss
 - Did not exhibit ignition or explosion or thermal runaway
 - Impact Sensitivity (BOE Impact)
 - Not sensitive to impact at drop height of 10.5cm, drop weight of 8lb (12 tests)
 - Small Scale Burn Test
 - Showed no detonation but burned intensely for 2 minutes 54 seconds
 - Friction Sensitivity
 - not sensitive to friction when tested up to 14,065 psi of pressure

- Above test results shall lead to successful EX number application
Summary

- OSI has taken the approach of replacing Ammonium Perchlorate (AP) in PAX-28 with Nitrotriazolone (NTO)
- NTO is readily available at HSAAP and is a key ingredient in many new insensitive melt-pour formulations such as IMX-101 and IMX-104
- Comparative dent depth between OSX-12 and PAX-28 suggests OSX-12 has matched PAX-28 in terms of metal accelerating ability
- IM properties of OSX-12 assumed to be similar to PAX-28, based on identical LSGT result
- DOT EX Number test results and VTS results suggest OSX-12 possesses excellent IM properties
- Preliminary fragmentation test suggests OSX-12 can produce adequate fragmentation performance in certain configuration
- Good processibility (low viscosity) suggests OSX-12 can easily be scaled up to full scale production
- Large scale blast test result against PAX-28 will indicate whether OSX-12 (in its current form) is an adequate replacement