Innovation ... Delivered.
The Incorporation of New Refining Technologies Within the Existing Nitrocellulose Manufacturing Process at the Radford Army Ammunition Plant.

Zachary Higginbotham
May 12, 2009
Nitrocellulose (NC): Past to Present

Discovered in the mid-1800’s

- First synthesized by Schönbein, highly unstable
- Abel perfected the purification process allowing “safe” manufacture
 - First Application: Black powder replacement
 - Celluloid – photographic film, table tennis balls, knife handles, fountain pens

Current Applications

- All extruded gun and small rocket propellant products across entire DoD
 - Flake and spherical powders in small caliber
 - Granular propellant in medium and large caliber (direct and indirect fire)
 - Extruded rocket motors (MK-90 Hydra 70mm, M7-TOW/SMAW, Javelin)

RFAAP is the Sole NC Manufacturing Plant in North America
Nitrocellulose Refining Improvement

Problem Statement:

- Nitrocellulose (NC) fiber quality influences propellant processing/performance as well as final product ballistic properties and contributes to undesired weapon system variability.

Objective:

- Develop a process to improve fiber quality (fiber length, distribution, residual agglomerates) within the existing refining operation
 - Incorporate learnings from similar industries to “push the envelop” of NC manufacturing technology
 - Maintain existing refining process cycle time
NC Manufacturing Process Flow at RFAAP

- Acid Boiling
- Acid
- Nitrination
- Cellulose
- Refining
- Manual (Batch) Dewatering & Packout
- Automated Dewatering & Packout
- Poaching & Blending
What is Fiber Quality?

Fiber Quality:

- Describes the relative dispersion of fibers and agglomerates during NC manufacture
- Fiber bundles are remnant unrefined particles due to an inefficient/ineffective refining process.
 - Artifact of sheeted cellulose and sheet opening/preparation technique

Goal: Achieve customer desired fiber length with minimum bundles
Results:

- Real-time fiber analysis developed characterizing processing effects
- Deflakers provide free fibers from NC with multiple cellulose sources
 - Minimizes residual agglomerates (fiber bundles)
- New process controls optimize and control to target requirements
Deflaked NC Fiber Quality Characterized

- New processing methods maintain long fiber lengths, narrows fiber distribution, and minimizes bundles

Significant Improvements in Fiber Quality Realized
Results and Conclusions Driven by Data

Successful Incorporation of New Pilot Equipment

- Deflaking technology proven in NC manufacture
 - Adapted from recycled fiber market segment

Improved NC quality from sheeted cellulose

- Single base propellant manufacturer qualified on new process
- Improved process robustness and product attributes towards cellulose source

Where Next?

- Currently executing a US government process improvement program installing full sized deflaking process at RFAAP
 - Leverage product quality improvement on entire NTIB NC base
 - Project to be complete summer of CY2009
Acknowledgments

Thanks are due to the following individuals for their tireless support on this project.

- Mario Paquet – Process Technology Manager, GD-Valleyfield
- Mike Lairson – NC Process Engineering, ATK Energetic Systems
- Jon Cloe – Research Chemist, ATK Energetic Systems
- Jamie Allison – NC Operations Manager, ATK Energetic Systems