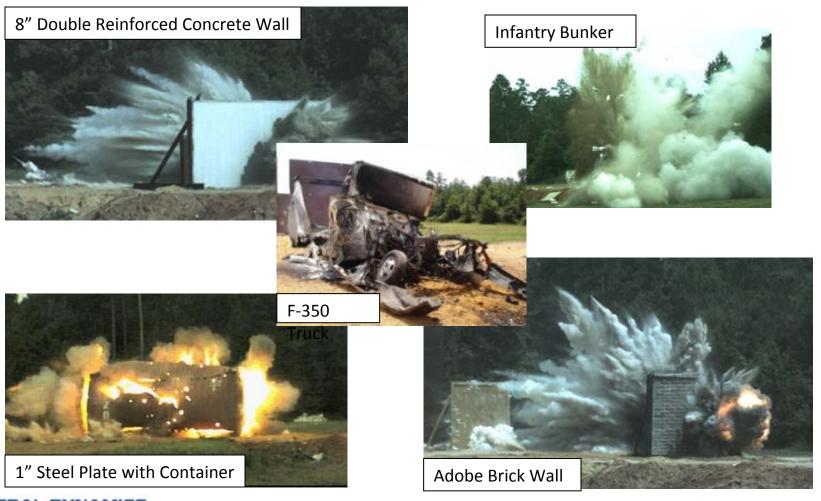

GENERAL DYNAMICS Ordnance and Tactical Systems

120MM IMHE-T® AN IM SOLUTION FOR CURRENT AND FUTURE OPERATING ENVIRONMENTS

Presented By: Jason Gaines, Systems Engineer 2009 NDIA IMEM Technology Symposium


120mm IMHE-T® Program Background

- GD-OTS and Nammo teamed together in 2002 to develop a low cost, IM compliant high explosive round of tank ammunition.
- IMHE-T® has Multi-Purpose (MP) capability against a target set that includes bunkers, reinforced concrete walls, light armor and personnel.
- Currently in Qualification for Norwegian Ministry of Defense.
- FMS program for Government of Egypt to begin Q3 2009

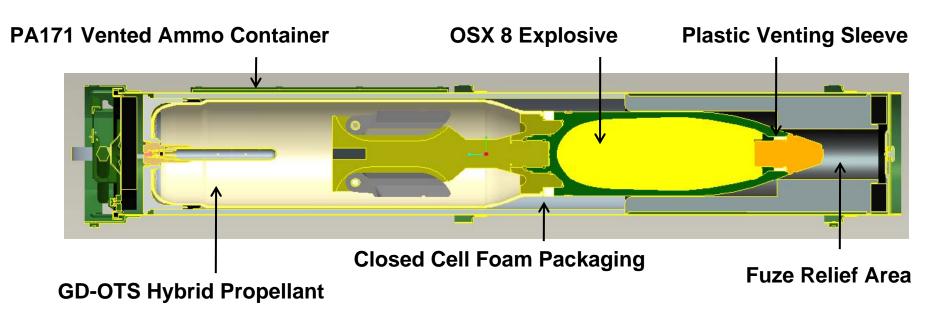
120mm IMHE-T® MOUT Target Performance

Insensitive Munitions (IM) Objectives

IM Test	Test Spec.	Passing Criteria	
Slow Cook Off (FCO)	STANAG 4382	TYPE V	
Fast Cook Off (SCO)	STANAG 4240	TYPE V	
Bullet Impact	STANAG 4241	TYPE V	
Sympathetic Reaction	STANAG 4396	TYPE III or better	
Shaped Charge Jet Impact	STANAG 4526	TYPE III or better	

Reaction Descriptions

Type	Description		
1	Detonation		
Ш	Partial Detonation		
III	Explosion		
IV	Deflagration		
V	Non-Propulsive Burning		



Systems Approach to IM Design

Key IM Design Concepts

- 1. Energetics must have good IM properties such as insensitivity to external shock and thermal stimuli.
- 2. Must eliminate all pressure build up caused by energetic confinement.

OSX-8 High Explosive

- □ Low Cost IM Explosive
- □ DNAN Based Explosive
 - Incorporates HMX and NTO
 - Comp B performance
 - Low Shock Sensitivity
 - Excellent IM Properties
- Produced by BAE Holston using existing equipment/facilities
- Utilizes existing melt pour LAP facilities
- □ Interim Qualification Status

HYBRID Propellant

State-of-the-art in Propellant Technology for Small, Medium and Large Caliber Ammunition

Excellent IM Characteristics
Low sensitivity to external
shock or thermal stimuli

All Qualification Testing Complete

Illustration of a propellant grain cross section

Deterrent Layer - applied to tailor the burn rate for specific applications to optimize ballistic efficiency

IM Test Series IAW MIL-STD 2105 C

(Conducted in July 2007 – Feb 2009 by GD-OTS and Nammo)

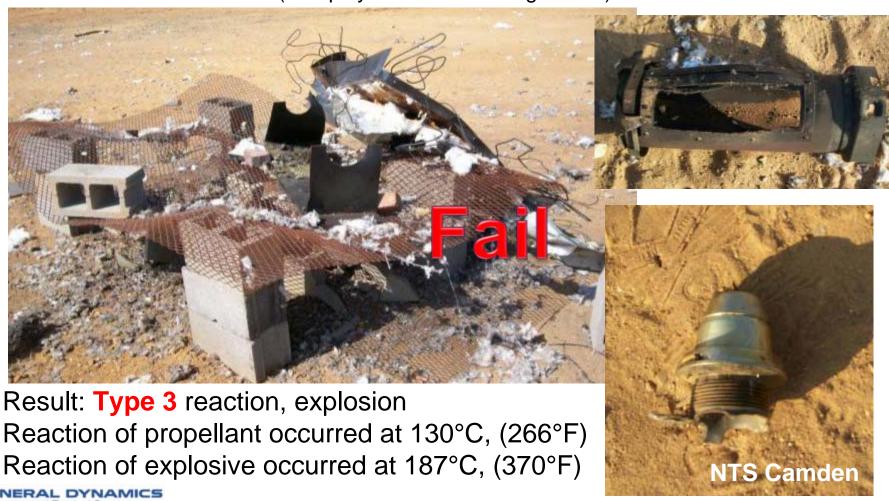
IM test:	Req. Type
 Slow Cook-off 	5
Fast Cook-off	5
 Bullet Impact (HE and Pro.) 	5
 Shaped Charge Jet (HE and Pro.) 	Pass (3-5)
 Sympathetic detonation 	Pass (3-5)

Environmental Test Sequence:

- 28 day T & H
- Vibration
- 4 day T & H
- 12 meter drop test Safe to dispose

Slow Cook Off Test Setup, Aug '07

Packaged Munition placed in an insulated oven.


Temperature is ramped to 50°C over a period of 1 hour and stabilized

Temperature is then ramped at a rate of 3.3°C per hour until reaction occurs

Slow Cook Off Test 1 Results, Aug '07

(with polycarbonate venting sleeve)

Slow Cook Off Test 2 Results, Dec '07

(with HDPE venting sleeve)

Result: Type 5 reaction, burning only Reaction of propellant occurred at 130°C, (266°F) Reaction of explosive occurred at 186°C, (367°F)

Fast Cook Off Test 1 Setup, Aug 07

(with Polycarbonate venting sleeve)

Packaged munition placed above 1000 gallons of Kerosene.

Fast Cook-off Test 1 Result, Aug '07

(with Polycarbonate venting sleeve)

Result: Type 4 Reaction

Propulsive reaction of war

Propulsive reaction of warhead

NTS Camden

Fast Cook Off Re-Test Setup, July '08

(with HDPE venting sleeve)

Filled warhead w/ inert fuze, placed above 1000 gallons of Kerosene

Fast Cook-off Test Results, July '08

(with HDPE venting sleeve)

Result: Type 5 Reaction at 22 min.

Bullet Impact Test Setup, Aug '07

Conducted two (2) BI tests

Test 1 – Three (3) round burst of 12.7 mm AP rounds fired at center of the warhead.

Test 2 – Three (3) round burst of 12.7 mm AP rounds fired at center of the propellant bed.

Ordnance and Tactical Systems

Bullet Impact Test Results, Aug '07

Shot to the warhead Type 5

Shot to the *propellant*Type 5

Sympathetic Detonation Test Setup, Feb '09

Ordnance and Tactical Systems

Sympathetic Detonation Test Results, Feb '09

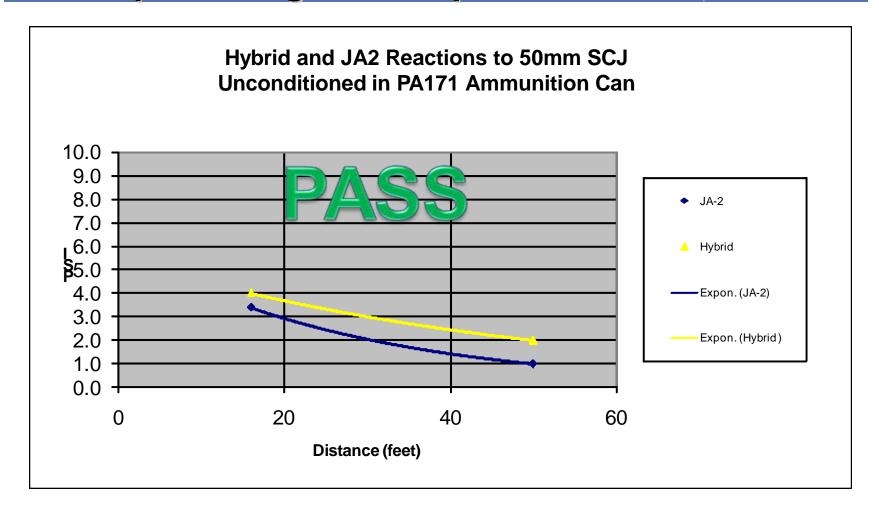
Shaped Charge Jet Test 1 Setup, Aug '07

Conducted two (2) SCJ tests

Test 1 - 50 mm Rockeye SCJ fired directly into warhead

Test 2 – 50 mm Rockeye SCJ fired directly into propellant bed.

Ordnance and Tactical Systems



Shaped Charge Jet Test 1 Results, Aug '07

Shaped Charge Jet Propellant Results, Jan '08

Environmental Test Sequence

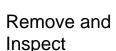
28-Day Temperature and Humidity Test

Hot Cycle: +63°C at 95% RH Cold Cycle: -40°C

Three (3) Rounds in Packaged Configuration

Pass

Remove and Inspect



<u>Transportation Vibration Test Sequence</u>

Two-Wheeled Trailer Vibration
Shipboard Vibration
Exploratory Vibration
Variable Frequency
Endurance

Pass

Remove and Inspect

4-Day Temperature and Humidity Test

Hot Cycle: +63°C at 95% RH Cold Cycle: -40°C **Pass**

12 Meter Drop Test

Round 1: Vertical (nose down)
Round 2: Vertical (base down)
Round 3: Horizontal

Pass

IMHE-T IM Test Summary

IM Test	Test Spec.	Passing Criteria	Results
Slow Cook Off (FCO)	STANAG 4382	TYPE V	Type V
Fast Cook Off (SCO)	STANAG 4240	TYPE V	Type V
Bullet Impact	STANAG 4241	TYPE V	Type V
Sympathetic Reaction	STANAG 4396	TYPE III or better	Pass
SCJ Impact	STANAG 4526	TYPE III or better	Pass

The 120mm IMHE-T has successfully completed all customer IM requirements

Path Forward and Conclusions

- The 120mm IMHE-T® will be considered fully IM compliant without waivers or deviations upon successful completion of testing this summer.
- Successfully meets all ballistic and lethality requirements without compromising crew survivability.
- Currently in Leopard II Qualification for Norwegian Ministry of Defense June Completion
- FMS Case for Abrams set to begin Q3 2009.

