

Factors Affecting Small Caliber Dispersion

Mr. Jeff Siewert Systems Engineer Arrow Tech Assoc. Inc. 1233 Shelburne Rd. Suite D-8 S. Burlington, VT 05403 802-865-3460 x19 jsiewert@prodas.com

Mr. Tim Janzen R&D Engineer Barnes Bullets, Inc. 38 Frontage Road PO Box 620 Mona, UT 84645 435-856-1000 timj@barnesbullets.com

Purpose

If you can't get a bigger target...

- Enhance Warfighter Lethal Capability via Reduced Small Caliber Ammunition Dispersion
- Product Capability Achieved Thru:
 - Design
 - Performance
 - Manufacturing
 - Ensure Reduced Dispersion thru changes in:
 - High Volume Production
 - Specialized Weapons and Ammunition
 - Precision Products
 - Low Volume

- Small caliber bullets in hi pressure systems operate at stress levels above projectile material yield stress
 - Deformed projectile shape may not be symmetric
 - Orientation of in-bore angle & CG offset varies shot-to-shot
 - "Linearity" assumptions valid for med. & large cal are not valid for small caliber
- Average dispersion (in mils) is small, factors not a significant influence for dispersion of medium & large cal rounds can be a large fraction of total error budget in small caliber...

- Projectile
 - Geometry / Mass Prop. (Quality?)
 - Exterior Grooves
- Cartridge
 - Projectile run out
 - Seating depth / free run

- Gun / Fixture
 - Barrel Flexural Properties (bending & hoop stiffness)

- Cartridge / Fixture Interactions
 - Action Time variation / Bore Straightness / Barrel Pointing
 - Engraving Variations
 - In Bore Angle / Exit Angular Rate / Effect on IB

"Internal"

Dispersion Factors

- Projectile radial stiffness / barrel bending
- Bore Parameters
 - Groove-Land width ratio
 - Free run / Forcing Cone
- Muzzle Blast / Base Pressure at Muzzle Exit

"External" Dispersion Factors

- Muz. Vel. / Action Time Variations
- Projectile mass / Drag Variation
- Winds / Wind Variation
- Aiming/Boresite Variation
- Muzzle Blast
- Cant Error
- Range Measurement Error

Spinner Dispersion

- Transverse Moment of Inertia
- Separation between CG & CP
- Run out of inner cavities or core relative to the bourrelet
- In-Bore Clearance
- Bourrelet Length
 - The last 3 above factors combine to produce CG offset and tilt of the principal axis

-----Factors which are not very important

- Gyroscopic Stability (must be above 1)
- Dynamic Stability
- Aerodynamic asymmetries (provided Axis Tilt & CG offset not affected)

May 2009

NDIA Small Arms

- Projectile body is nominal interference fit w/ lands, but...
- Elastic deflection of bore due to internal pressurization allows the projectile to tip in-bore relative to bore centerline
- Random orientation of projectile in-bore angle and random magnitude of in-bore angle applies loads to the barrel which affect barrel pointing and cross velocity @ muzzle exit.

Barrel Hoop

& Bending Stiffness

Unleaded

Unfailing

Unbeatable

- Gun barrel diameter grows elastically in response to internal pressurization
 - OD influences ID growth
- Projectile Tips in Bore due to ID Growth
- Projectile tilt / CG offset / spin during early in-bore travel drives barrel transverse motion

Projectile/Barrel Interaction

- Forward bourrelet controlled by (undeflected) barrel lands
- Aft bourrelet has clearance caused by bore deflection due to internal pressure
- Bullet CG Offset & Tilt, combined w/ spin forces barrel vibration...

Land Interface &

Ogive Geometry

Tangent Ogive Moves CP Fwd ~ 0.2 Caliber, ~ 20% dec. in Jump Sens.
Ogive Geometry Has Effect on Bourrelet Length

• Tangent ogives have longer contact length = lower in-bore angle

- <u>Initial angle of attack</u> (α) with respect to initial velocity vector at muzzle release
 - Bad news: difficult to measure
 - Good news: usually small, and effect on dispersion (~10%) is small even for large angles
- Initial Angular Rate (ω):
 - <u>THE</u> major dispersion source (~ 75% +)

External Grooves

- External Grooves provide clearance for body material displaced during engraving
 - Prevents tipping of projectile in bore during engraving
- Reduces radial stiffness relative to same bullet w/o Grooves (see next slide)
- Empirical evidence: no benefit if grooves are > Land diameter

Bourrelet Stiffness

If you can't get a bigger target...

vs. Dispersion

- Disp. @ 5m lb/in is <40% of Disp. @ 50 m lb/in.
- Analysis assumes solid copper projectile....
- Unique response map for each bullet/fixture combination

Engraving Variation

If you can't get a bigger target...

- Increased Engraving Std. Dev = Inc. MV & Action time Variability
- Both can have an effect on barrel dynamics & dispersion

Barrel G/L Width Ratio

If you can't get a bigger target...

- Low G/L Width Ratio = Wider Lands
- **Provides Inc. In Bore Control = Dec. Dispersion**

Bore Growth vs. Forcing Cone Angle

If you can't get a bigger target...

- Shallower Angles = Inc. press. & inc. bore defl. @ all engraved
- Inc. projectile material remains @ end of engraving, reducing in-bore angle down bore

Free Run & Bullet Construction

- Solid Bullets shoot smallest dispersion w/ 0.050"-0.080" Free run
- "Conventional" Drawn Copper Jacket / Lead Core bullets shoot smallest dispersion w/ 0.015-0.030" free run
- Details dependent on:
 - Case volume & propellant rise rate
 - Yielding/deformation of jacket and / or core resulting from accel.
 - Travel until projectile side wall is fully supported
 - Details of bore elastic deflection during engraving

- Jacketed Bullet has higher stresses @ rifling interface
- What is Yield Strength of body/jacket/core?
- Earlier support (e.g. less free run) required for lead bullet to limit asymmetric deformation due to low mat'l Y.S.

May 2009

NDIA Small Arms

Jacket Deposits on Lands

- Non-uniform deposition causes local, asymmetric variations in bore straightness, varies shot-to-shot
- Generates lateral loads on projectile & barrel
- Creates increased variations in projectile angular rate & bore pointing vector at muzzle release
- Exit Conditions vary shot-to-shot, causing dispersion

Summary Design Factors

- <u>Ammunition Parameters:</u>
 - High Quality Projectile & Cartridge
 - Projectile Material Properties Selected for Mission
 - Radial Stiffness Appropriate for Weapon
 - Reduce Engraving variability
 - Reduce Jacket Melting / Deposition
 - Appropriate Projectile "Free Run"
- Barrel Parameters:
 - Shallow Forcing Cone
 - Increased Land Width
 - Appropriate Hoop & Bending Stiffness

NDIA Small Arms

• Established and Quantified Ammunition and Weapon Interaction Parameters Which Drive Dispersion

Wrap-Up

Conclusions

- Dispersion Capability
- Repeatability
- Priorities Established for Ammunition and Weapons
 - Design
 - Performance Guidelines
 - Production
 - Maintenance
- Parameter Impact confirmed by Analysis and Test
 - Expanded Test Approach Established

<u>Factors Identified are Compatible with</u> Volume Manufacturing and Applications

ΝΠΙ

Warfighter Benefits

- Reduced Dispersion
- Uniformity of Performance Across Lots
- Establish Design & Manufacturing Criteria for:
 - Weapon
 - Ammunition

