

40mm Grenade Ammunition Panel Papers 21 May, 2009

40mm Grenade Ammunition Special Projects Team

Development of a 40mm Mann Barrel System for both High and Low Velocity Ammunition

21 May, 2009

Adam Sorchini, 40mm Grenade Ammunition Special Projects

- Develop 40mm test fixture for both High and Low Velocity ammunition
- Design electronically controlled breech system for remote initiation
- Ensure that new Mann barrel system interfaces with current data acquisition system to record EPVAT (Electronic Pressure, Velocity, and Action Time)

- Previously version of Mann barrel breech used pinball style plunger to initiate primer
- Pin on rope/pulley system was used to release plunger remotely
- Previous breech used interrupted thread to interface with barrel requiring custom fitting

- Mann barrel is rated up to a max pressure of 20 ksi with failure at ~60 ksi
- Breech lugs see highest stress concentrations on lug corners

Xz

- Used ADAMS to refine the Mann barrel firing energy to match the MK19 and M203 weapons
 - Matched value of energy at primer initiation
 - By changing the firing pin and firing pin spring, the breech is easily converted from a high velocity system to a low velocity system

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

- Mann Barrel System with electronically controlled breech system
 - Design based on Cannon Cal Mann barrel breech
 - Solenoid released hammer
 - Action Time start signal triggered by hammer fall
 - Multiple pressure ports
- Lugged breech configuration allows for interchangeability and eliminates the need to custom fit breeches to barrels
- Tolerance and Fits
 - Collaborated with fabricator to develop proper tolerance scheme to achieve desired fitments

Next Generation Mann Barrel Breech Lock-Up

RDECOM

Next Generation Mann Barrel Hammer & Spring Design

- New hammer and spring system provides improved consistency over plunger system
 - More consistent primer initiation
 - More accurate Action Time Start signal
 - Commercially available spring (AR15/M16A1 hammer spring)
- Upgrades to system:
 - New two-piece axle design allows for easier installation
 - New hammer design allows operator to cock hammer easily
 - Assembly simplified

Original Hammer Design

User Friendly Hammer & Two-Piece Axle System

RDECOM

RDECOM Next Generation Mann Barrel Safety Upgrades

- Upgrade to system includes internal safety interlock
 - Cartridge cannot be initiated until breech is locked
 - Manual safety necessary but secondary

- ARDEC currently refining the Mann barrel to maximize user friendliness and safety
- Long term plan to introduce system into production for lot acceptance testing
- Considering ways to determine difference between breeches equipped for high or low velocity ammunition
- Perform 1,000 round endurance test
- Comparison test of Mann barrel to MK19

Development of a 40mm High Velocity Single Chamber Cartridge Case (SCCC) ^{21 May, 2009}

Matthew Millar, 40mm Grenade Ammunition Special Projects Peter Martin, 40mm Grenade Ammunition Special Projects

- Replace standard dual chamber M169 cartridge case with single chamber case
 - Reduces cost
 - Reduces number of critical/major defects and inspections at the system level
 - Does not degrade current performance

- Eliminate gun stoppage
 - Excessive base plug movement
- Eliminate bolt face erosion
 - Leaking of hot propellant gases past the base plug
- Safety
 - Inability to fire de-bulleted cartridge case into barrel
 - Eliminates base plug ejection during cook-off situation
- Reduce cost
 - Elimination of base plug and closing cup
 - Easing manufacturing processes
 - Reduce critical/major defect inspection

SCCC Program Approach

- Phase I Design Development
 - Evaluation of case material, primer, propellant confinement methods
 - Finite Element Analysis (FEA) to support design, material, and process development
 - Process and quality assurance criteria
 - Evaluate design, material, and process and quantify variables
- Phase II Design Validation
 - Evolve manufacturing process
 - Advanced performance analysis/assessment
- Phase III Production Verification
 - Comprehensive verification tests for transition to production

RDECOM

SCCC Material Selection

Objectives:

RDECOM

- Establish producible SCCC configuration
- Select and define SCCC material ensuring strength, quality, and Affordability
- Establish a reliable, repeatable high volume manufacturing process ensuring availability, and affordability
- Material candidates (6061, 6061 PT, 6066, 6070)
 - Stress/Strain under pressure
 - Crimp/Pull test
 - Thermal effects
 - Weapon interface
 - 6061-T6 chosen as case material

Cost, formability, strength

SCCC Modeling and Simulation

- MK19 weapon function and interface simulation
- Completed FEA with candidate materials

RDECOM)

MK19 Simulation

FEA on Unsupported Area of Case

Bullet Pull Analysis

RDECOM SCCC Propulsion Modeling and Simulation

- Objective
 - Determine appropriate propellant for SCCC
 - Determine charge weights
 - Model pressures and velocities
- Propellant Candidates
 - M9 Flake, Mil-P-50206
 - M2 Single Perf, Mil-P-60989
 - M9 Flake, Mil-P-48127

Propellant	Charge Wt, g	Pressure, psi	Velocity, ft/s	% prop burnt
M9 Flake, Mil-P-50206 (D=0.034", L=0.005")	3.00	11952	769	100
	3.25	13478	807	100
M9 Flake, Mil-P-48127 (D=0.058", L=0.006")	3.25	10057	766	100
	3.50	11239	804	100
M2 Single Perf, Mil-P-60989 (D=0.039", L=0.048", web=0.016")	3.00	3495	358	38
	4.00	3423	435	39

Propellant Confinement Method

- Objective
 - Confine the propellant in the cavity from cartridge case loading until firing
 - Closure disc adhere to anodized aluminum
 - Ease of assembly / support high volume production
 - Immune to environmental/aging effects
 - Compatible with propellant
- Candidates
 - 5 adhesive discs & 1 combustible plug
 - Various facestock and adhesive
- -
 - Down-selected candidates
 - Cost, adhesive strength, ease of assembly,

compatibility

Closing Discs

- Objective
 - Repeatable output and sensitivity
 - Output to support combustion of propellant
- Primer Candidates
 - W209 (shotshell primer) & Fed215 (large rifle magnum)
 - W209 more sensitive & higher energetic output
 - Similar profiles and action times
 - Fed215 more production oriented
- Closed bomb analysis primers are interchangeable when used with the same propellant

Charge Establishment

- Established baseline performance of M169 case using Mann Barrel
- Initial propellant charge weight for SCCC determined from IB code
 - Charge weights constant for two closing discs
 - Charge weight adjusted for combustible plug energy
- Cases loaded to ±5% of initial IB code weight
 - Fired at hot (+165°F), cold (-65°F), and ambient (70°F)
- Test showed signs of unburned propellant

RDECOM)

- IPT is investigating ways to improve propellant efficiency

- Optimize propulsion system efficiency
 - Alternate primer
 - Alternate propellant
- Down select to best propulsion system and confinement method & continue maturity
- Continue into next phase of testing
 - Environmental
 - Rough handling
 - MK19 integration
 - Qualification
 - Production transition

M385A1 Composite Projectile Feasibility Study 21 May, 2009

Christopher Summa, 40mm Grenade Ammunition Special Projects

Reduce unit cost

Objectives

RDECOM

- Integrate rotating band to projectile body
- Meet existing requirements of M385A1

Overview

- Method
 - Replace aluminum with injection molded plastic/metal powder composite
 - Reduce manufacturing/assembly operations

- <u>Phase 1</u>: Characterize and down-select materials
- <u>Phase 2</u>: Mold, assemble, and inspect projectiles
- <u>Phase 3</u>: Conduct live fire and environmental testing
- Results of Phases 1-3:
 - Some success test firing from Mk19 Mod 3 GMG
 - Gas cap required for projectile to survive launch
 - Improvement potential for part strength and dimensional stability
- <u>Phase 4</u>: Follow On Effort
 - Projectile Design Changes
 - Mold Optimization Analysis
 - Mold Modification
 - Produce/Inspect Projectiles
 - Inspection
 - Test Firing at ARDEC

Projectile Design Changes

RDECOM

Material: PA 6/10 with Stainless Steel Fill

- Mold flow analysis baselined on original geometry
- Analysis calibrated to actual projectile dimensions from original effort
- New projectile geometry implemented into analysis
- Used fill material similar to PA 6/10 with SS
 - Better characterized than actual material
- Gate configuration, size, and location optimized
- Full round top gate superior to existing side fan gate:
 - 1. Reduced core pin deflection
 - 2. Part geometry more stable
 - 3. Less part ovality

RDFCOM

Mold Optimization Analysis

RDECOM)

- Top gate implemented before other modifications
- Examined shrink rate with top gate on current geometry
- Modified existing mold cavity and core pin

Old Gate

- Contractor to mold & inspect 100 projectiles
- Test Firing
 - Performed at Armament Technology Facility (ATF) located at ARDEC
 - Hot, Cold, Ambient cartridge conditioning
 - Unlinked & linked belt configuration (single shot and burst) from Mk19 Mod 3 GMG
 - EPVAT Testing from Mann Barrel
 - Muzzle Velocity
 - Pressure
 - Action Time
- PM to decide future of composite projectile program
 - Technology applicable to other cost reduction programs

Producibility Improvements of 40mm High and Low Velocity Liners 21 May, 2009

James Grassi, 40mm Grenade Ammunition Special Projects

Program Objectives

- M433 HEDP One-Piece Liner (Low Velocity – M203 GL)
 - Reduce cost of liner production by combining components
 - Improve penetration reliability
- M430A1 HEDP Non-Fluted Liner (High Velocity – Mk19 GMG)
 - Reduce cost of liner production by simplifying geometry

Baseline Testing and M&S

Baseline Testing

RDECOM

- Performed at ARDEC using production hardware
- Jet tip formation
 - Spin and no spin
 - Events captured by x-ray
 - Tip velocity
 - Jet straightness
- Armor penetration depth
 - Spin and no spin
 - RHA steel plates
- Baseline Modeling and Simulation
 - Test data feeds into baseline model
 - Model represents actual performance
 - Baseline model stepping stone to design improvements

X-Ray of Jet Formation

Penetrated RHA

Test Projectile

Jet Formation Simulation

- ARDEC Warheads designed liner based on validated simulation
- ARDEC Ammo integrated apex cap & retaining ring features
 - Analysis showed slight jet velocity loss with integrated apex cap at full wall thickness
- Phase 1 fabricate liners with varying apex cap thickness & perform static armor penetration test
 - Objective: determine max allowable apex thickness
- Integrated Product Team
 - PM-MAS
 - ARDEC (Ammo & Warheads)
 - DSE (Prime Contractor)
 - FCI & Trans-Matic (Liner Mfg Sub-Contractor)
 - American Ordnance (Projectile Assembly)

M433 HEDP One-Piece Liner

<u>One-Piece Liner</u>

- 1. Retaining Ring replaced by press fit flange
- 2. Liner elongated and added radius .
- . 3. Liner Cap integrated into liner apex

M433 HEDP One-Piece Liner

• Challenges

RDECOM

- Required multiple iterations on both liner & explosive press tooling
- Flange not forming up as expected and leaving void under flange (flange not supported)

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Contact should be farther out radially to eliminate annular depression

- Phase 1 Results
 - Slightly greater penetration
 - Can function with full apex cap wall thickness
 - Requires optimization of flange design to improve loading
- Path forward
 - Conduct Phase 1B contract
 - Fabricate optimized liners
 - Jet characterization & penetration lab tests
 - Gun launch projectiles against armor plate

M430A1 HEDP Non-Fluted Liner

- ARDEC Warheads designed liner & ARDEC Ammo teamed with contractors to integrate producibility enhancements
- Phase 1 fabricate liners & perform static shaped charged jet characterization & armor penetration test
 - No spin

RDECOM

 Multiple spin rates analyzed due to large spin decay over effective range

M430A1 HEDP Non-Fluted Liner

Non-Fluted Liner

- . Flutes in liner removed
- . Slight radius added to liner

- Integrated Product Team
 - PM-MAS

RDECOM

- ARDEC (Ammo & Warheads)
- AMTEC (Prime Contractor)
- FCI & Trans-Matic (Liner Mfg Sub-Contractor)
- American Ordnance (Projectile Assembly)
- Producibility Study & Fabrication
 - IPT adjusted dimensioning scheme for producibility
 - Tightened material specification
 - Looked at grain structure uniformity
 - Reduced learning curve due to One-Piece Liner Program
 - No issues with tooling, part fabrication or explosive loading

M430A1 HEDP Non-Fluted Liner

• Test Results

RDECOM

- Poor penetration
- Bifurcation regardless of spin rate including no spin condition

- Path Forward
 - M&S of Liner using inspection data to reproduce bifurcation (2D & 3D simulations)
 - Copper material & grain size study

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Study of Advanced Lethal Mechanisms in 40mm Grenade Ammunition

21 May, 2009

Jason Wasserman, 40mm Grenade Ammunition Special Projects

- Close-In Anti-Personnel Lethality Study
 - Characterize the lethality of sub-projectiles given various parameters
 - Analyzed both mission oriented and independently
 - Study intended to establish cartridge design parameters for 40mm low velocity system
- Enhanced Fragmenting Grenade Study
 - Scalable technology for high and low velocity grenade ammunition
 - Dramatically increase lethality over currently fielded high and low velocity system

- Analyze how various parameters affect subprojectile lethality
 - Determine added benefit over currently fielded systems
 - 12 Ga. Shotgun and M576 Multiple Projectile Ctg (Spherical shot based systems)
 - Determine optimal design requirements for increased lethality
 - Analyzed Parameters
 - Sub-projectile Shape, Size, Material, Quantity
 - Range, Muzzle Velocity, Pellet Spread, Aim Error

 ARL using ORCA to determine individual subprojectile lethality

Lethality Analysis

 Calculations made assuming randomly placed pellets given dispersion parameters

Close-In Anti-Personnel

- Lethality is calculated as mission-oriented
 - Inability to carry out assigned task in a prescribed time frame
 - Stand, Aim, and Fire

RDECOM

- Used to determine system effectiveness in a realistic Close Quarter Battle situation
 - Evaluates loss of fire team under various scenarios
- Baselined against fielded shotgun system and M4 carbine
- Able to include various protective gear, number of enemy combatants, and tactics

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

- Design Parameters
 - Designing complete new cartridge system
 - Started with generic shape to develop ideal flight properties
 - Potential new propulsion system for heavier projectile
 - Using fuze envelope from MEMS S&A program
 - Lethal mechanism based on work done in cannon caliber

RDECOM

Enhanced Fragmenting Grenade

- Producibility Study
 - Working with contractor to develop production methods
 - Placing preformed fragments
 - Optimizing packing factor
 - Material selection
 - Assembly procedures prior to explosive loading

RDECOM

- Close-In Anti-Personnel
 - Anticipate study to conclude by October 2009
 - IPT to determine feasibility of forming a cartridge development program
- Enhanced Fragmenting Grenade
 - Lethality analysis
 - Prototype fabrication
 - Lab testing for fragmentation performance

