RAREFACTION WAVE GUN
TANK MAIN ARMAMENT DEMONSTRATOR

Presented by: David C. Smith, P.E.
Written by: Eric Kathe, Ph.D., P.E.
Benét Laboratories, Watervliet Arsenal, NY
RAVEN is a hybrid propulsion that achieves:

- The ballistic efficiency of orthodox guns.
- The recoil advantage of prior recoilless rifles.
- Unprecedented reductions in barrel heating.
- Increased accuracy.
• For an orthodox gun, recoil is imparted by both the projectile and propellant.
 – Envision propellant as n “billiard balls” pressurized by massless springs. (This is a “Finite Volume” approximation.)
 – Each “billiard ball” has a mass, mci, equal to the total charge mass divided by n.
 – After shot exit, the propellant gases continue to expand and accelerate out of the cannon.

• For tank gun KE rounds, there is more recoil from the propellant gas than the bullet.
• Muzzle brakes reduce momentum by redirecting muzzle blast sideways or aft.

Perforated and Single Baffle Brakes Can Reduce Propellant Momentum by About Half.

Double Baffle Brakes Can Deflect Propellant Backwards.
• RAVEN sends propellant backwards before projectile exit.
 – A delay time occurs between “uncorking” the breech and the forward propagation of
 the pressure loss through the propellant gas column.

Rarefaction Wave Front

 – Between the base of the projectile and here, the conditions are the
 same as for closed breech firing.
 – Pressure, density, and temperature are reduced behind the wave
 front.
• Heat transfer to the bore of a gun is estimated as (AMCP 706-150 page 3-2):

\[
q(x) = \int_0^{t_f} \frac{1}{2} \lambda(x) \left(\frac{\gamma R}{\gamma - 1} \right) \rho(x, t) v(x, t) \left(T_g(x, t) - T_w(x, t) \right) dt
\]

• Using representative average values and considering the wall temperature to be small, net heat transfer is essentially proportional to:
 – gas density,
 – gas velocity,
 – gas temperature, and
 – duration of exposure.

\[
q(x) \propto \bar{\rho}(x, t) \bar{v}(x, t) \bar{T}_g(x, t) \Delta t
\]
• RAVEN Reduces:
 – gas density,
 – gas velocity,
 – gas temperature, and
 – blow-down duration.

• Gun barrel erosion commences in earnest only after reaching the Arrhenius threshold temperature of 1007K for gun steel.
 – Below this temperature, gun steel does not react with propellant gas
 – Above this temperature, gun steel “burns†.”
 – RAVEN reduces or eliminates exposure duration above the Arrhenius threshold.

† Chemical reactions with propellant that release heat
• Following the successful trials in 35mm, a large caliber RAVEN was developed using design and hardware assets remaining from the 105mm Multi-Role Armament and Ammunition System (MRAAS) program.

MRAAS incorporated a novel swing chamber. It was engineered to provide 120mm tank gun lethality from a 105mm bore, and... to fire beyond line of sight (BLOS) and non line of sight (NLOS) missions.
MRAAS Firing Video Showing Load and Fire
• MRAAS rotating chamber gun shown open with integrated blow-back nozzle/bolt.
Employs a balanced blow-back bolt with integral expansion nozzle and hydro-pneumatic recoil cylinders.

The recoilless barrel will substantially reduce muzzle whip, and, thus, increase accuracy.

The swing chamber approach affords a straightforward munitions handling method to accommodate RAVEN’s rearward facing expansion nozzle.
• Intentional rupture of cartridge case.
 – Compatible with modular artillery charge and modified cartridge case technology.
• Breech travel governed by same propellant pressure that drives the projectile.
• Recoil stroke to vent port and recoil mass determine vent time.
• Robust, reliable, and weaponizable . . .
 – Prior 35mm tests verified 1% standard deviation in occasion to occasion blow-back bolt vent timing.
• Vent timing hastened by progressively increasing sharpness of bolt faces from blunt nosed to conical.
 - Recoil stroke to commence venting varies from 19mm to 50mm as shown above.
 - The upper displacement approximates recoil stroke to un-choked flow.
Shot 3 Experimental Results.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>m_p</td>
<td>8.31</td>
<td>Kg</td>
</tr>
<tr>
<td>m_c</td>
<td>6.29</td>
<td>Kg</td>
</tr>
<tr>
<td>v_m</td>
<td>1.16</td>
<td>km/s</td>
</tr>
<tr>
<td>I_p</td>
<td>9.6</td>
<td>kN*s</td>
</tr>
<tr>
<td>I_T</td>
<td>12.4</td>
<td>kN*s</td>
</tr>
</tbody>
</table>
Test Data/Results

<table>
<thead>
<tr>
<th>Shot number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>17</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2/19</td>
<td>4/14</td>
<td>5/1</td>
<td>5/19</td>
<td>8/13</td>
<td>8/27</td>
<td>TBD</td>
<td></td>
</tr>
</tbody>
</table>

Test Set-up

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance to Vent</td>
<td>mm</td>
<td>50</td>
<td>42</td>
<td>42</td>
<td>50</td>
<td>43</td>
<td>37</td>
<td>Closed</td>
</tr>
<tr>
<td>Projectile Mass</td>
<td>Kg</td>
<td>8.31</td>
<td>8.31</td>
<td>8.31</td>
<td>8.31</td>
<td>8.31</td>
<td>8.31</td>
<td>8.31</td>
</tr>
<tr>
<td>Charge Mass</td>
<td>Kg</td>
<td>4.97</td>
<td>5.65</td>
<td>6.29</td>
<td>6.78</td>
<td>6.75</td>
<td>7.05</td>
<td>6.98</td>
</tr>
<tr>
<td>Chamber Volume</td>
<td>L</td>
<td>7.71</td>
<td>7.71</td>
<td>7.71</td>
<td>7.71</td>
<td>7.78</td>
<td>7.84</td>
<td>-</td>
</tr>
</tbody>
</table>

Predicted Results

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Muzzle Velocity</td>
<td>km/s</td>
<td>1.12</td>
<td>1.26</td>
<td>1.40</td>
<td>1.50</td>
<td>1.49</td>
<td>1.55</td>
<td>1.57</td>
</tr>
<tr>
<td>Max Pressure</td>
<td>MPa</td>
<td>217</td>
<td>306</td>
<td>454</td>
<td>563</td>
<td>551</td>
<td>643</td>
<td>669</td>
</tr>
<tr>
<td>Momentum</td>
<td>kN*s</td>
<td>9.6</td>
<td>10.7</td>
<td>12.6</td>
<td>14.7</td>
<td>14.0</td>
<td>14.4</td>
<td>24.2</td>
</tr>
</tbody>
</table>

Experimental Results

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Muzzle Velocity</td>
<td>km/s</td>
<td>-</td>
<td>-</td>
<td>1.16</td>
<td>1.34</td>
<td>1.37</td>
<td>1.38</td>
<td>-</td>
</tr>
<tr>
<td>Max Pressure</td>
<td>MPa</td>
<td>167</td>
<td>225</td>
<td>-</td>
<td>389</td>
<td>-</td>
<td>447</td>
<td>-</td>
</tr>
<tr>
<td>Momentum</td>
<td>kN*s</td>
<td>-</td>
<td>-</td>
<td>12.4</td>
<td>12.9</td>
<td>12.7</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Impact on Soldier of the Future

• Reduce Recoil Severity Imposed on Combat Vehicles.
 – Facilitates large-gun / small-vehicle integration.
 – Eases burdens of fire on the move integration.
• Increased Thermal Performance.
 – Enables use of hotter propellants to achieve higher velocities.
 – Nearly doubles sustained firing rate.
 – Nearly doubles number of burst fire rounds.
• Enables lightweight cannon.
 – Recoil energy is inversely proportional to recoil mass.
 – Burst fire thermal capacity is proportional to thermal mass.
 – Facilitates large-gun / small-vehicle integration.
• Reduces and redirects blast.
 – Will enable “hatches open” operation while meeting requirements of MIL-STD 1474D.
Concept Vehicle courtesy of:
Professor Phil Sutton, Director General Science & Technology Strategy, UK MOD
• A truly large caliber rarefaction wave gun has been designed, fabricated, and is currently undergoing test and validation.
 – Results from this brassboard demonstrator support the fundamental precept of RAVEN that venting a large caliber gun during the ballistic cycle does not slow the bullet.

• RAVEN has been successfully integrated with a novel swing-chamber munitions handling interface.
 – This interface affords straightforward combat system integration of this armament technology.