25mm Ammunition Development

From idea to prototype

SUNT STRIKE FIGHTER

Martin van de Voorde (TNO) Eelko van Meerten (RWMS)

Contents

• History

- Proposal for 25 mm ammunition development
- Pre-Feasibility study for conceptual design
- Trials with conceptual design
- Conclusions \rightarrow input for prototype

History

- JSF development traject
 - NL partnering in JSF-development
 - JSTAB visit partner countries (2003)
 - Check for (new) technologies
 - Lower the costs
 - Weight reduction
 - Proposal TNO: gun ammunition development
 - In close co-operation with operational user and ammunition manufacturer
 - JSTAB voting (2004)
 - Ranking #1 of all ideas

TNO's proposal 25 mm gun ammunition development

Optimized Effectiveness

- Maximum firepower for 25 mm gun
- Only one ammunition type needed for air-to-air and air-to-ground combat missions

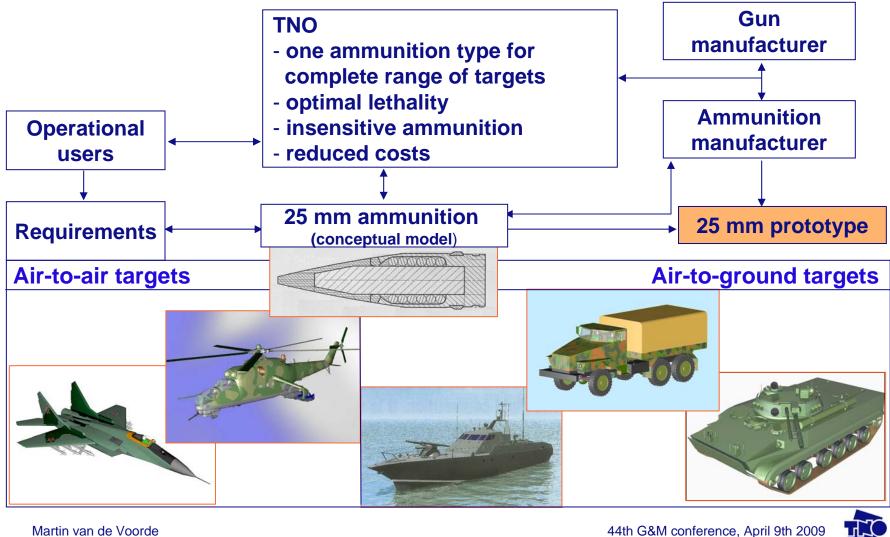
Safe

- No high explosives/detonator carried, resulting in less vulnerability of:
 - airplane itself
 - ground storage sites
 - aircraft carriers

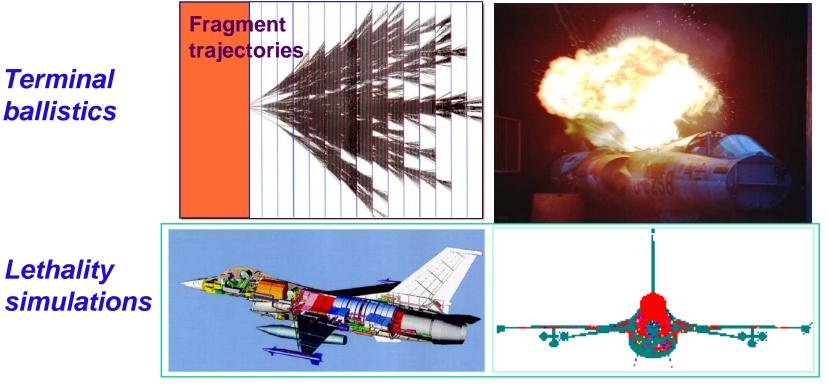
Cost Effective

- Only one round needed for combat and training (no environmental hazards)
- Only one ammunition type gives considerable logistic advantages
- Flexible and cheap development of projectile also for possible future requirements

Martin van de Voorde


TNO's 25 mm proposal (2)

- Lethality optimization together with the manufacturer (RWMS) and operational user (RNLAF) to develop the best 25 mm ammunition against selected targets
 - One round for the complete range of targets: as good as an AP, better than HE
 - FAP shows good performance to complete range of targets
 - Safe solution (no explosives, no DU)
 - Cost effective solution
- TNO has unique capability to optimize frangible ammunition with respect to lethality
- JSTAB Technology Readiness level:
 - Tools and experience: 9
 - Development of 25 mm round: 6
- Proposal started in 2004
 - Prefeasibility study
 - Design and realization of conceptual model(s)


Development of 25 mm ammunition

(09DV3/2111)

Frangible ammunition

Based on many years of experience in performing firing trials and lethality simulations against air- and ground targets, TNO has a unique capability to evaluate and develop specific ammunitions, like frangible ammunition.

7 Martin van de Voorde

Effects of Frangible projectiles

Experience of TNO with frangible projectiles

• TNO terminal ballistic model based on live firings against different plate arrays and combat targets:

Projectiles	Targets
• Frangible FSP's against: (FSP = Fragment Simulating Projectile)	aluminum plate arrays
• 12.7 mm FAP against:	aluminum plate arrays, armored steel plate arrays, urban targets, composite targets, ceramics
• 20 mm FAP against:	aluminum plate arrays, armored steel plate arrays, truck
• 25 mm FAPDS against:	aluminum plate arrays, armored steel plate arrays, helicopter, aircraft, IFV, urban targets
• 27 mm FAP against:	aluminum plate arrays, armored steel plate arrays
• 30 mm FAPDS against:	aluminum plate arrays, armored steel plate arrays
• 30 mm FMPDS (Goalkeeper) against:	aluminum plate arrays, armored steel plate arrays, missiles
• 35 mm FAPDS against:	aluminum plate arrays, armored steel plate arrays, composite materials, urban targets, aircraft

Phase 1: Pre-feasibility study

- Paper study only;
 - The results are based on simulations only (no trials!!)
 - Projectile drawings/designs delivered by RWMS
 - Terminal ballistic and lethality simulations performed by TNO
 - Based on real End-game scenario's
- TNO redesigned the projectiles by varying the penetrator mass and the number of included preformed fragments (total projectile mass constraints).
- Deliverable:
 - a paper study for preliminary 25 mm projectile designs with optimized capability in air-to-air and air-to-ground combat

Phase 2: Effectiveness optimization

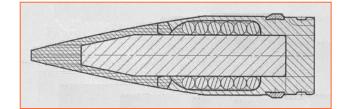
- Projectile optimization with respect to penetration and lethality
 - Penetration characteristics are determined with standard software; input data based on experiments with other caliber projectiles
 - Fragmentation characteristics are determined using TNO's Frangible Terminal Ballistic model:

¤ makes fast, flexible, cheap projectile design changes possible

- Simulation results have to be verified with trials is next step
- Air-to-ground:
 - aircraft velocities
 - dive angles
 - range

• Air-to-air:

- Hind: air-to-ground scenario's are used
- MiG-29



Optimisation of conceptual design (I)

Basic concept:

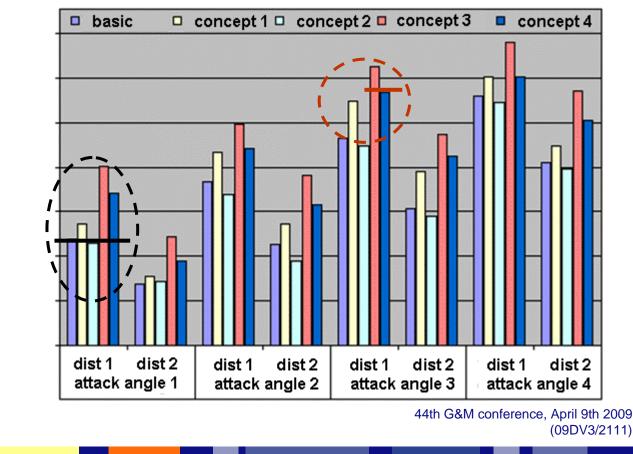
frangible penetrator preformed fragments

FAP basic design was evaluated in Lockheed Martin 25mm trade study


Results: "If the partner countries want a general purpose round - this round is recommended against Air-to-Air and/or Air-to-Ground targets"

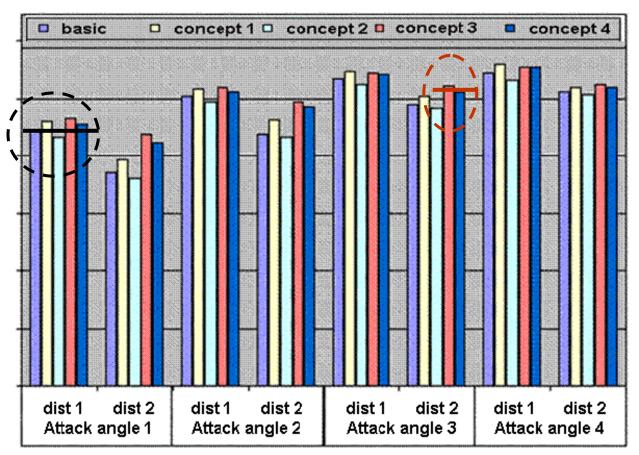
preionneu naginemo

- Concept 3: heavier projectile heavier frangible penetrator no preformed fragments
- Concept 4: heavier projectile equal frangible penetrator mass more preformed fragments


Optimisation of conceptual design (II) Penetration characteristics RHA plate thickness as a function of range

Lethality results against the BMP-2

- The fragmentation and penetration characteristics are implemented in the lethality software
- The chart presents the average SSPK given a hit on the BMP-2
- The lethality results are presented for different Slant ranges as a function of dive angles



Lethality results against the Ural4320

 The chart presents the average SSPK given a hit on the Ural4320 (loaded with ammunition boxes)

15 Martin van de Voorde

Conclusions

- Air-to-Ground:
 - Base-line version can be improved
 - Low Drag versions improve lethality for longer ranges
 - Heavier penetrator improves lethality
 - Effect of preformed fragments is minor for selected targets
- Air-to-Air:
 - The specified combat ranges are too short to result in an extra advantage for Low Drag versions
 - The difference in lethality for all considered FAP types is minor
- The FAP base-line version (already recommended LM trade study) can be improved for Air-to-Ground missions without losing Air-to-Air capability
- The selected FAP "paper" prototypes are ready for manufacturing and further development

Next phase of the 25 mm round development

- 25 mm FAP conceptual models
- Perform firing trials
 - Validation of terminal ballistic model
 - Validation of SSPK results
- Prototype of 25 mm FAP

Trials, November 2007

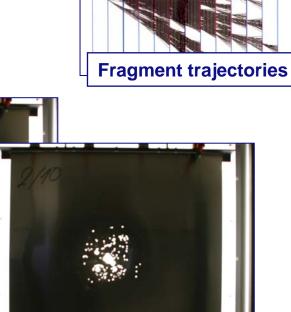
- In pre-feasibility phase;
 - Penetration characteristics are determined with standard software; input data based on experiments with other (caliber) projectiles
 - Fragmentation characteristics are determined using TNO's Frangible Terminal Ballistic model:
 - makes fast, flexible, cheap projectile design changes possible
 - Simulation results have to be verified in next phase with trials
- Range targets and impact velocities are selected to verify the fragmentation and penetration characteristics of the projectiles used in the pre-feasibility phase
- Conceptual designs are based on results of pre-feasibility phase

18 Martin van de Voorde

Conceptual models selected

- Basic design):
 - frangible penetrator
 - preformed fragments

- Concept 1:
 - equal total mass frangible penetrator no preformed fragments
- Concept 3 :
 - heavier projectile heavier frangible penetrator no preformed fragments
 - material type X
 - Low Drag version


Concept 5 : - see concept 3 - material type Y

Trials

- Targets:
 - Monoblock (representing hard target)
 - + after armour effect
 - Range target (representing soft target)
 - Both short and long range

20 Martin van de Voorde

Conclusions

- Trials:
 - Base-line version was skipped, based on expected penetration performance in combination with costs.
 - Normal mass FAP projectile performance slightly less then used input data in pre-feasibility study
 - Higher mass FAP projectile performance slightly better then used input data in pre-feasibility study
 - In general FAP material X penetrators will have better penetration capability compared to FAP material Y penetrator
- Simulations:
 - Both heavier projectiles fulfill the RNLAF requirements
 - FAP material X shows highest lethality against hard targets
 - FAP material Y shows highest lethality against soft targets

Conclusions

- Difference between trial & simulation data is minor
- Study gives opportunity to determine design for 25mm prototype

 RWM-S has selected a design and manufactured a prototype.

Ω

