

Adaptive Flight Control Surfaces: Revolutionizing Missile & Munition Flight Control Systems

Professor Ron Barrett

Director of the Adaptive Aerostructures Laboratory (AAL) Aerospace Engineering Department The University of Kansas, Lawrence, Kansas USA

> AAL ...Backroom for the Innovation-Driven Aerospace Organizations of the world...

44th Annual Gun and Missile Systems Conference & Exhibition Hyatt Regency Crown Center, Kansas City, MO 8 April 2009

1

R. M. Barrett 8 April 2009 Ur.

Unclassified

Distribution Unlimited

Outline:

Purpose:

Describe to the Missile and Munitions Community the revolutionary weapon systems configurations and missions enabled by modern adaptive materials and aerostructures

Outline:

I. Background & Brief Introduction to Adaptive Materials

II. History of Programs

III. New Actuator Class

IV. Current & Future Programs Enabled

Adaptive Materials

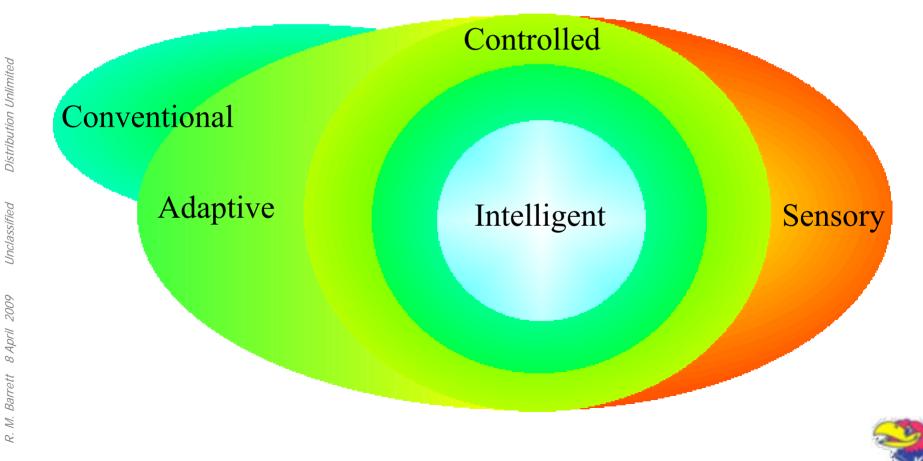
... A Paradigm Shift

Structural deformations indicate that a given loading state is occurring and must therefore be accommodated.

POWER PLANT GROUP

Attach Wing "A Attach Tail Attach "R" Vina Here PRODUCTION ENGINEERING GROUP

New Paradigm: Structural deformations can be controlled and can therefore be used to enhance mission effectiveness.


Distribution Unlimitea

Inclassified

Adaptive Materials: A (Very) Brief Introduction

What are Adaptive Materials & Structures?

Adaptive Aerostructures: A (Very) Brief Introduction

- Most Useful Classes of Adaptive Materials:
 - Shape-Memory Alloy -High Deflection, Slow, Lots of Power
 - Variable Rheology Materials -Good for clutching and changing stiffness
 - Piezoceramics -Very Fast, Low Power
 - Optically Adaptive Materials -Newest class, controllable color, luminosity, reflectivity, opacity

New Actuator Classes

Grumman F-14 the First aircraft fielded with man-made adaptive materials

History

Raychem Corporation Tinel Lock™ SMA Cable Shielding Termination

Future Programs

R. M. Barrett

Background

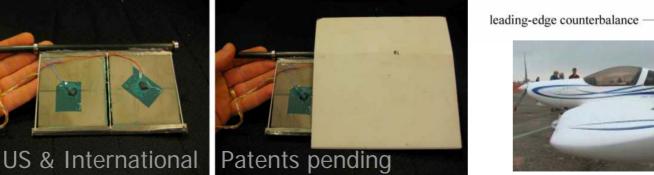
GE90-155B Turbofan on a Boeing 777 Fitted with SMA-Actuated Chevrons

Background History New Actuator Classes Future Programs

Adaptive Flutter Test Surfaces

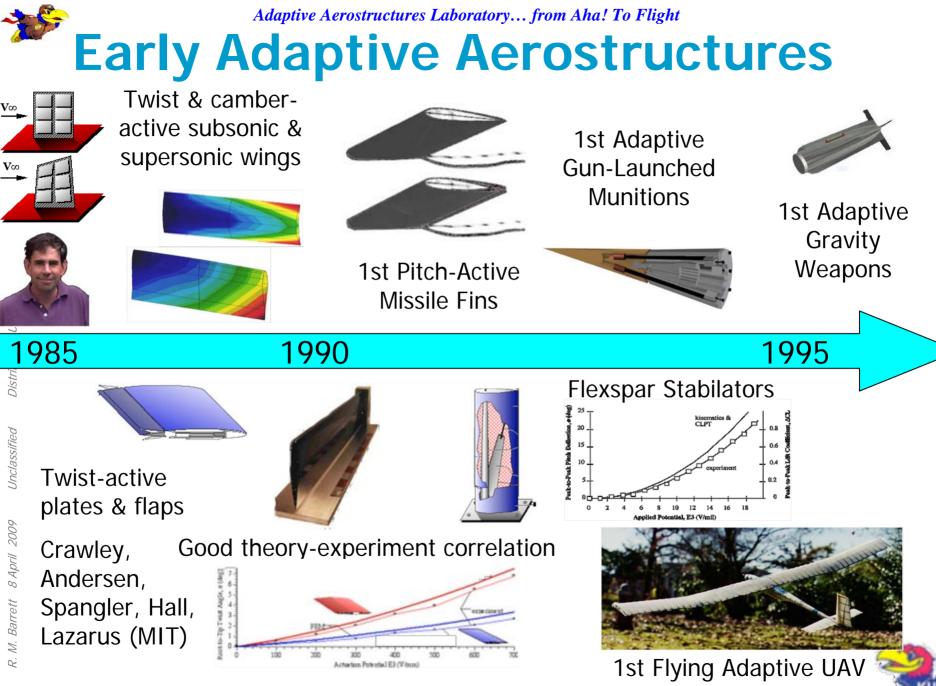
- Solid State
- Order of magnitude less device weight
- Order of magnitude less installation weight
- Half the acquisition price of the conventional system
- Half the installation price and downtime of the conventional system

graphite-epoxy aerodynamic shell-


- Exacting Phase Control
- Flight Rated to Mach 3
- Half the flutter insurance rates

precompression elastomeric bands bearings

PBP/DEAS Actuator Elements


main spar

Background

History

New Actuator Classes

N801GB

Background History

New Actuator Classes

Future Programs

10

First 20 years of Programs with Lineage to Flying Adaptive UAVs

	Project	Modeling Test Techniques			Sponsor		
			nique				
		Close	Closed FEMBench Stand or Flight				
		or CLP			Tunne		
21	'94-95Aeroservoelastic Flexspar Fin	3	3	3	3		AAL
22	95-96Solid State Adaptive Hiller Servopaddle Rotor (Ga	amata)		3	3	3	NSF
23	'94-97 Flexspar Micro Aerial Vehicle Stabilator (Kolibri)	3		3	3	3	DoD CDTO
24 25	95-97Barrel-Launched Adaptive Munition (BLAM) (95-97Smart Compressed Reversed Adaptive Munition (SC	3		3	3		AFOSR
25	95-97 Smart Compressed Reversed Adaptive Munition (SC	RAM)		3	3		WL/MNAV
26	95-97 Monolithic Rotationally Active Linear Actuator (RALA) 3		3	3		WL/MNAV/Boein
27 28	'97-98Pitch-Active Torque-Plate Wing	3		3	3		AAL
28	'98-99Range-Extended Adaptive Munition (REAM)	3		3	3		DARPA
29	'98-00Hypersonic Interceptor Test Technology (HÍTT)	3		3	3		SMDC/Schafer
	'98-00Coleopter MAV Flexspar Stabilators	3		3	3	3	DARPA
31	'00-01 Pitch-Active SMA Wing	3		3		3	AAL
32	'00-01Light Fighter Lethality Fin MicroFlex Actuator '01-02Pitch-Active Curvilinear Fin Actuator	3		3	3		TACOM/ARDEC
33	01-02Pitch-Active Curvilinear Fin Actuator	3		3	3		AMCOM
34 35	'01-03Shipborne C'measure Range-Ex. Adaptive Munition (3		3	3		TACOM/ARDEC
35	00-03Thunder Multilaminate RALA Fin	3		3			WL/MNAV
36	'00-03Centerline Precompression Multilaminate RALA Fin	3		3			WL/MNAV
37	'02-03Center Pivot Flexspar Fin	3					ARL
	2003- StAB	3	3	3	3	3	TUD/TNO
39	2003- Coleopter PBP Grid Fin	3	3	3	3 3 3 3	3	TUD
		3	3	3	3	3	TUD
41	2003-Twist-Active Wings for Extended-Range Gravity V	3	3	3	3	3	WL/MNAV/Boein
Ba							
R. M.							<u></u>



Background History

New Actuator Classes

Overview of Programs with Lineage to Flying Adaptive UAVs

Background

History

New Actuator Classes Future Programs

Brief Guided Round History

M712 Copperhead 1975

QuickTime™ and a decompressor e needed to see this picture. QuickTime™ and a MPEG-4 Video decompressor are needed to see this picture.

> QuickTime™ and a decompressor are needed to see this picture.

QuickTime™ and a decompressor are needed to see this picture.

QuickTime™ and a H.264 decompressor are needed to see this picture.

Future Programs

Background History Nev

New Actuator Classes

M. Barrett

d'

Guided Round History

Reducing the caliber...

M 247 Sergeant York 1977 - 1985

QuickTime™ and a MPEG-4 Video decompressor are needed to see this picture.

Guided Round History

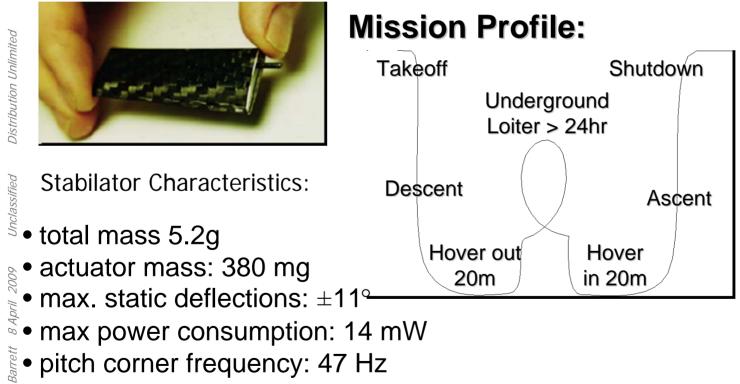
How to guide subscale rounds?

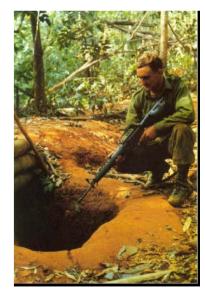
What is needed in such a flight control actuator???

- Setback tolerance: 30,000 100,000g's
- Balloting, setforward, ringing impervious
- Compatible with supersonic control effectors
- Not affected by atmospherics (rain, dust, dirt, snow, etc.)
- High feedback command fidelity maintained during all flight phases
- 20 yr storage life
- -40 to +145°F
- Lightweight (<1g), Low Volume (<1cc), Low Power (10's of mW)
- High bandwidth (>200 Hz)

History

• Production shipset costs in single dollars... at most

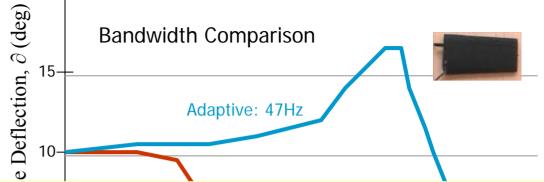

Unclassified


One possible solution... from the MAV world

The 1st Micro Aerial Vehicle (MAV) -- by the DoD CounterDrug Technology Office 1994 - '98

H 264 decompresso

Enabled by Flexspar Piezoceramic Stabilators



- Unclassified
- first natural frequency in pitch: 23 Hz

Advanced UAVs:

Driving the need for Adaptive Actuators -faster, lighter, stronger

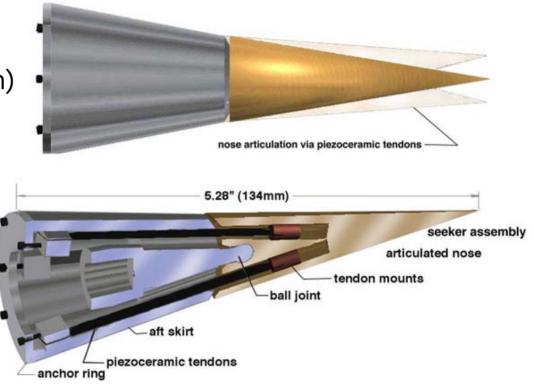
Adaptive Surfaces vs. Conventional Servos

- 96% reduction in power consumption
- 16x increase in bandwidth
- 99.2% decrease in slop
- 12% OWE savings
- 8% MGWTO savings

Operating Empty Weight Fraction

Guiding Lower Caliber Rounds... More History

Barrel-Launched Adaptive Munition (BLAM) Program 1995 - '97

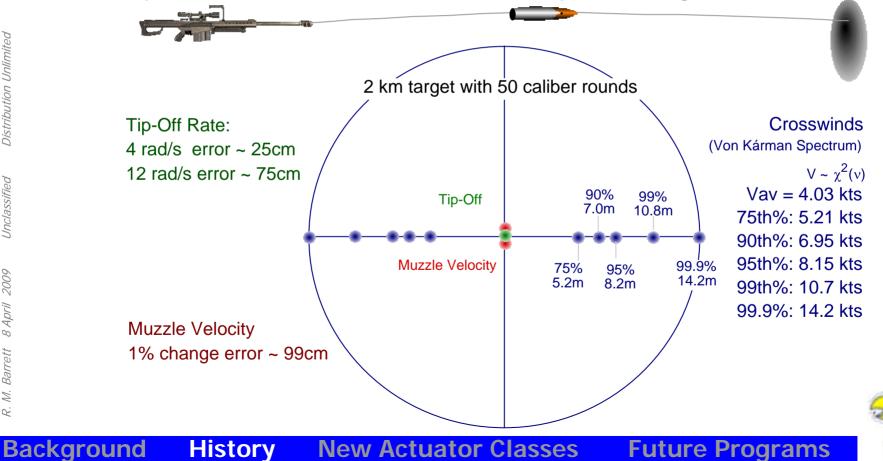

USAF/AFRL-MNAV

- Aerial Gunnery (20 105mm)
- Extend Range
- 2g maneuver

(Eglin AFB tests '97)

(Mach 3.3 tests '96-'97)

- Increase hit probability
- Increase probability of a kill given a hit
- Reduce total gun system weight fraction


M. Barrett

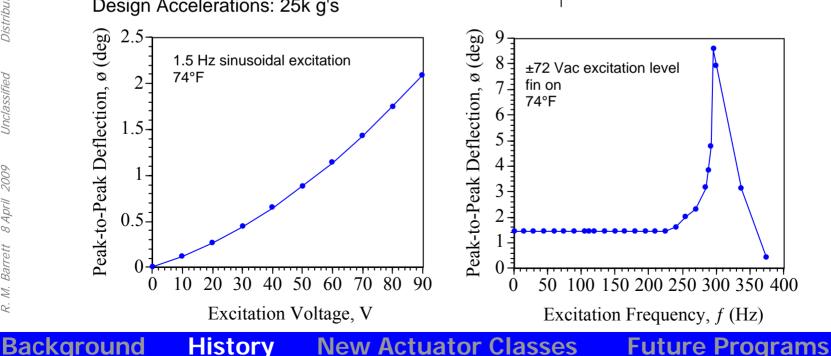
Guiding Small Arms Rounds... More History

Range-Extended Adaptive Munition (REAM) Program 1998 - '99 TACOM-ARDEC (Picatinny-APG) Phase I SBIR

- Guide 50 cal sniper rounds against targets moving up to 100km/hr
- 10cm dispersion @2km under 99% winds, up to 10% grade

Guiding Small Arms Rounds... More History

Range-Extended Adaptive Munition (REAM) IRAD 1999 - 2001 BAT-Lutronix Corp. developed supersonic piezoelectric FCS actuators


0.050" (1.3mm)

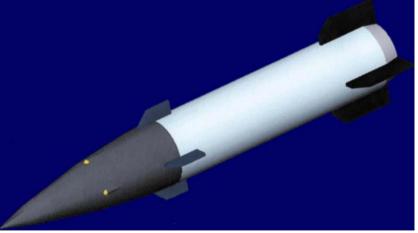
0.20" (5mm)

10 mil stainless steel flight control surface

Flight Control Surface and Actuator Performance

Max Power Consumption: 28 mW Nominal Power Consumption: 3.5 mW Static Power Consumption: < 1µW Design Mach Range: 0.8 - 4.5, STP Design Accelerations: 25k g's

Guiding Small Arms Rounds... More History


Shipborne Countermeasure Range-Extended Adaptive Munition (SCREAM) Program 2001 - '03

DARPA-TACOM ARDEC SBIR Phase II

 Change from sniping to countering high jinking rate sea-skimming missiles

New Actuator Classes

- Change from 0.50 caliber to 40mm
- Change from ~2g's of maneuver authority to many tens of g's
- Entire FCS passed 41,000g shock table test

Future Programs

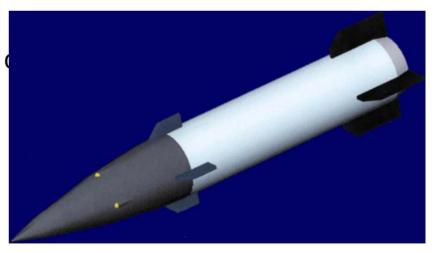
QuickTime™ and a MPEG-4 Video decompressor are needed to see this picture.

History

Q.

Background

Distribution Unlimitea



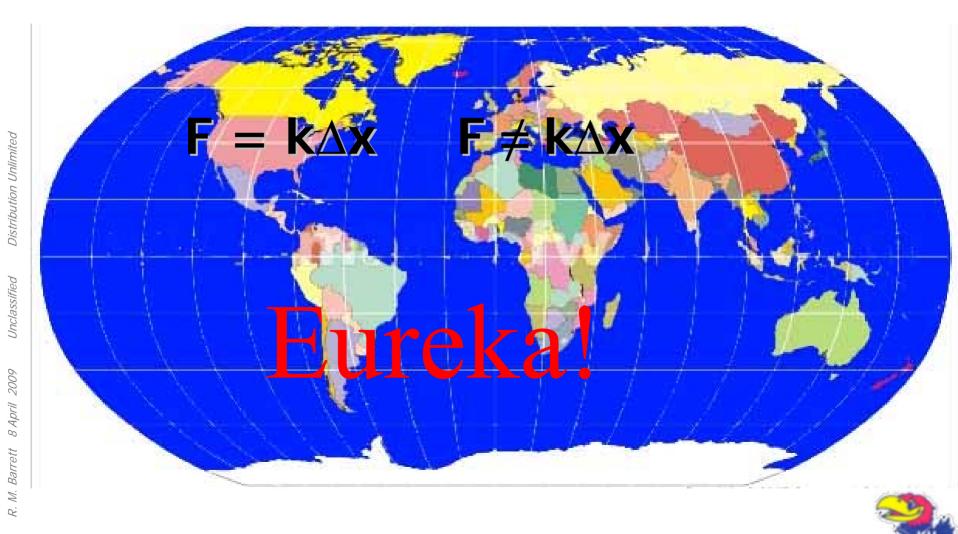
Guiding Small Arms Rounds... More History

Shipborne Countermeasure Range-Extended Adaptive Munition (SCREAM) Program 2001 - '03 DARPA-TACOM ARDEC SBIR Phase II

SCREAM Actuator Challenges:

- Long actuator bay length
- Difficulty pushing beyond 50,000g's
- Low deflection -- ~ok for sniper, not of

Now Where???


Distribution Unlimited

New Actuator Classes Future Programs

Guiding Small Arms Rounds... The Ephphany!

Discoveries from Europe... 2003 - 2004

History

New Actuator Classes

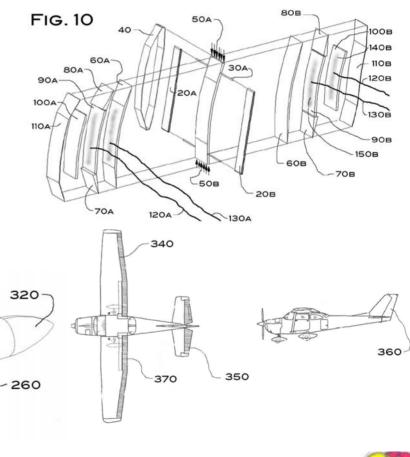
Future Programs

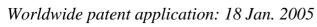
PBP Actuators: Real Performance!

• Fraction of the weight, size & power consumption of US Actuators

(i.e. much smaller actuator bays)

200+% deflection increases


300


310

- Higher bandwidth
- Lower cost

FIG. 17

Lower g-sensitivity

270

300

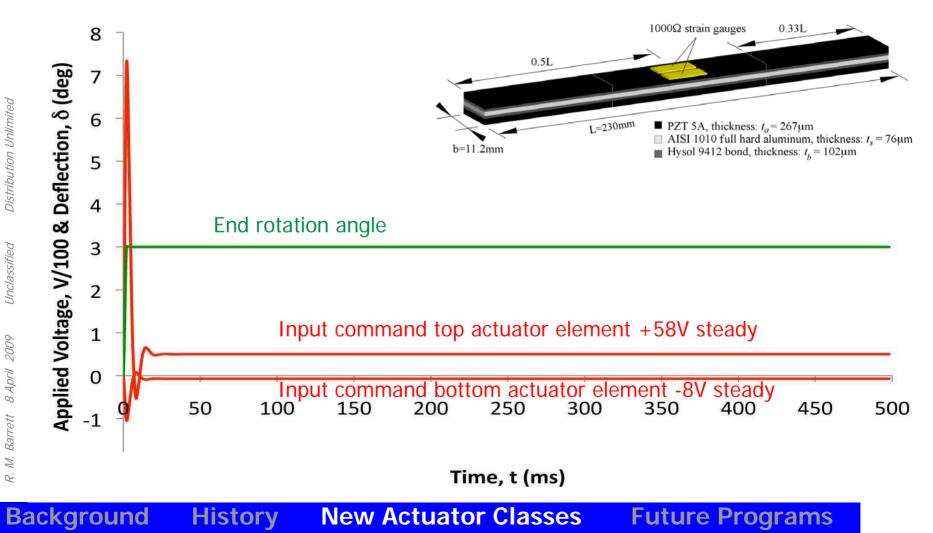
330

Unclassified

2009

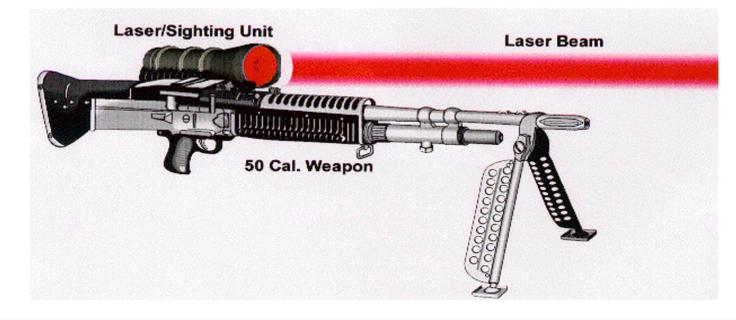
8 April

M. Barrett


d'

PBP Actuators: Real Performance!

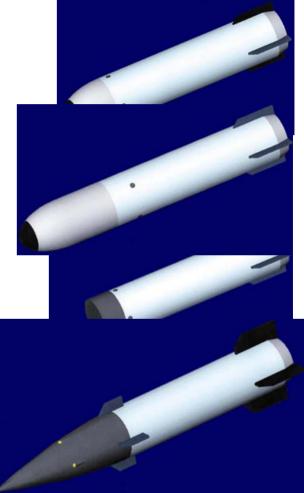
Best performance in the adaptive structures industry:


• 1kHz equivalent bandwidth • Driving 0.40/.50 cal Mach 4.5 canards

PBP Actuators: What to do with them???

- Guided rounds of many calibers
 - -Lethal & nonlethal missions
- Countermunitions

Distribution Unlimited


Unclassified

8 April 2009

Future Programs

Families of Steered Piezoelectric Enhanced Adaptive Rounds (SPEARs)

- Roll Stabilized Recon. SPEAR
- Full Control Recon. SPEAR
- Full Control KE SPEAR
- High Maneuverability/ Counterweapon SPEAR

Future Programs

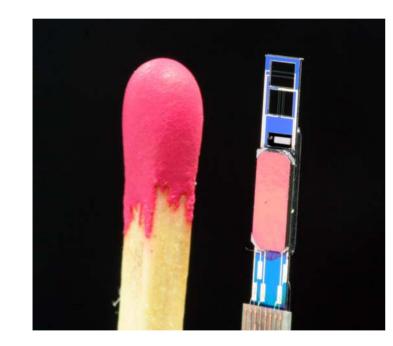
d History

New Actuator Classes

Distribution Unlimited

Unclassified

8 April 2009


R. M. Barrett

Adaptive Aerostructures Laboratory... from Aha! To Flight

Countersniper with SPEARs & Nanemometers

Nanemometers sense not pressure,

but 3-D particle velocity

New Actuator Classes Future Programs

Countersniper with SPEARs & Nanemometers

QuickTime™ and a MPEG-4 Video decompressor are needed to see this picture.

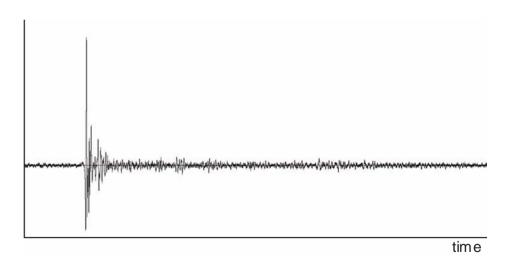
New Actuator Classes

Future Programs

Background

History

Countersniper with SPEARs & Nanemometers


New Actuator Classes

History

Gun shot localization

- Real time
- > 1km for hand gun
- Single sensor

Future Programs

Background

Countersniper with SPEARs & Nanemometers

QuickTime[™] and a H.264 decompressor are needed to see this picture.

New Actuator Classes

Future Programs

Background

History

Adaptive Aerostructures Laboratory... from Al

Roll Stabilized SPE

"Look Over the Hill" Supersonic MAV mission tungsten nose

camera

New Actuator Classes

• Totally imper

- Fastest way to get local reconnaissance images
- Totally impervious to weather/gusts

History

• ~ \$20/round

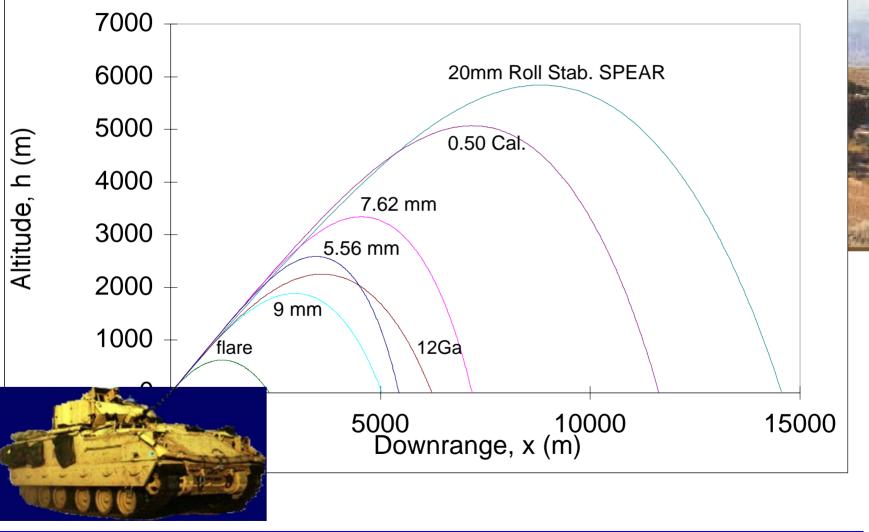
Background

active fins

rollsonde senso

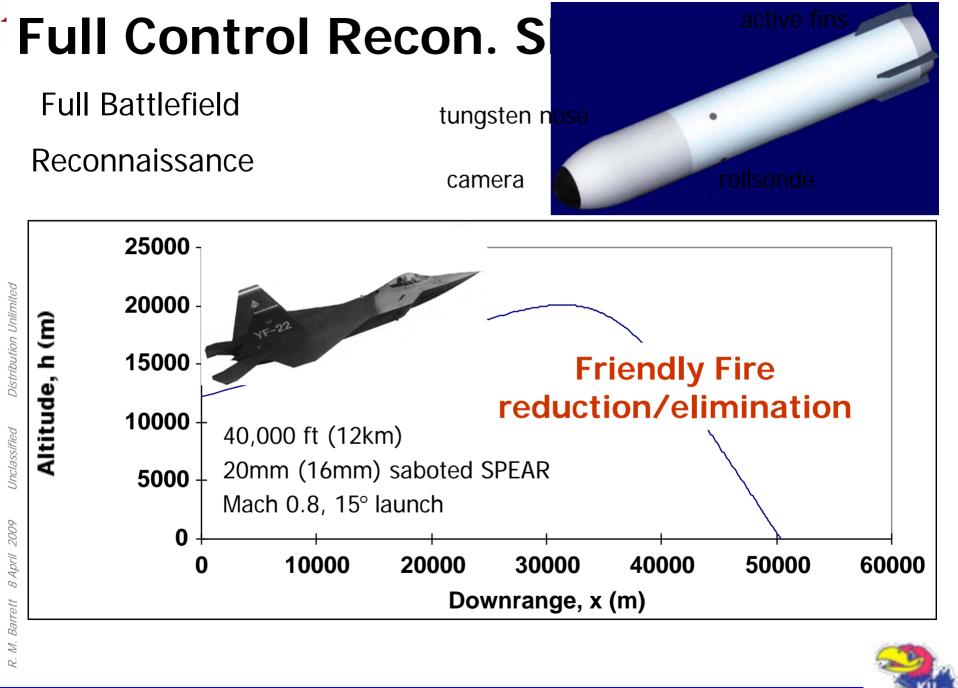
Future Programs

COTS


technology

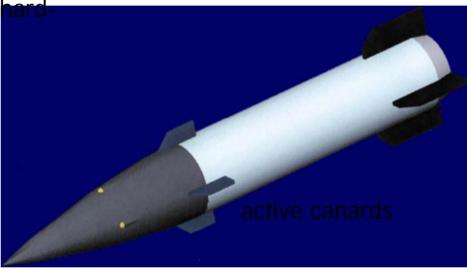
Roll Stabilized Recon. SPEAR

History


Background

New Actuator Classes Future Programs

roll stabilized



Weapon/Counterweapon SPEAR

Weapon mission:

Impart high-g missile performance to have launch projectiles

tungsten tangent ogive nose

inactive fins

Counterweapon mission:

Defeat all Higher Caliber Weapons

Method:

- Overmatch Bandwidth
- Overmatch Control Authority
- KE and/or HE

Distribution Unlimited

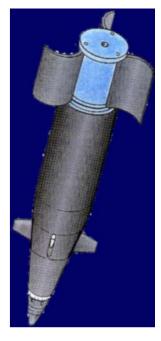
Unclassified

Selected Missions

Counter artillery Counter gravity weapon

Air superiority & invulnerability

Countersniper Counter small arms



Vehicle & Structure Protection

Transport Protection

High-g sea-skimming missile defeat

Future Programs

Background

History New A

New Actuator Classes

Sniper Threat Defeat

Change in Gun & Projectile Design Philosophy

Old

- Big Gun w/long rifled barrel
- Highly toleranced barrel
- Stiff barrel
- High tolerance on powder, rounds
- Hard-mounted sight
- Incapable of self-defense mode

New

- Light, smooth barrel gun
- Looser barrel tolerances
- Less stiff barrel
- Insensitive to variations in charge
- Gyrostabilized floating sight
- Can fire unguided, rounds rapidly for self defense

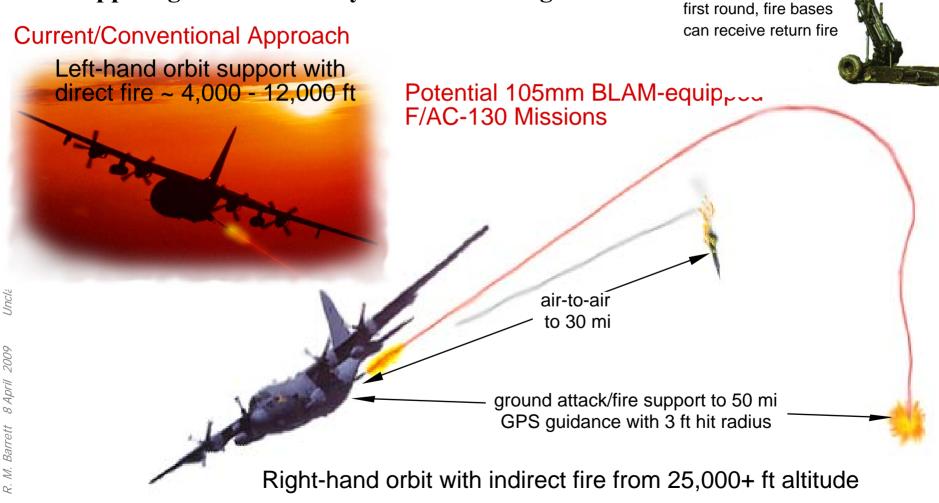
Future Programs

- Unguided, spinning rounds
 Guided
- Rounds fly ballistically
- Rounds vulnerable to winds, elevation, etc.
- Target moves in 1-3 sec. TOF

- Guided despun rounds
- Rounds fly flat trajectory
- Rounds insensitive to winds, elevation, etc.
- Target tracked

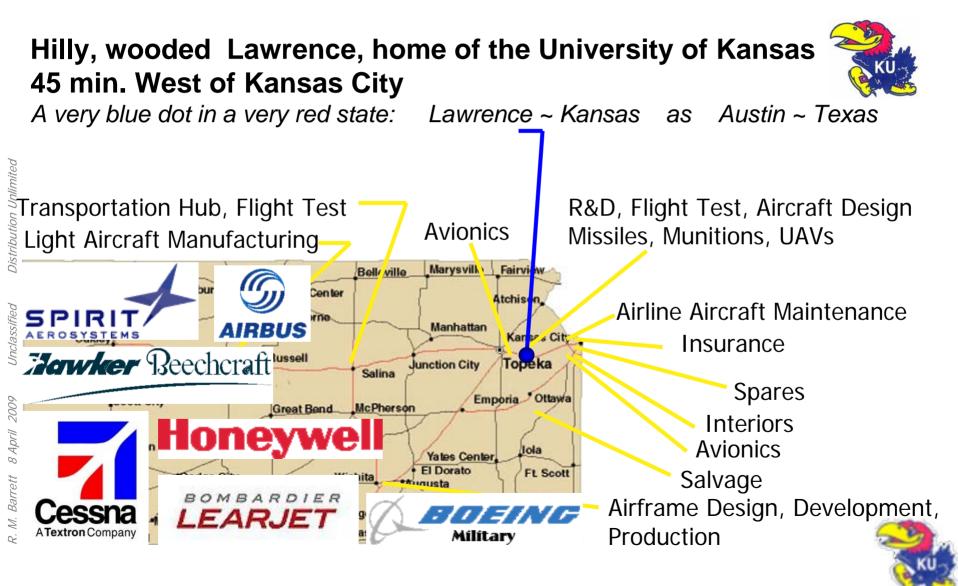
R. M. Barrett 8 April

ibution Unlimitea


New Actuator Classes

within 2 minutes after

Guided Indirect Fire Aerial Rounds


Increase stand-off range & accuracy of fire support/ground attack by an order of magnitude

Background History **New Actuator Classes Future Programs**

... and a few interesting facts about Kansas...

