#### Development and Fielding of the Guided Multiple Launch Rocket System (GMLRS) Unitary Warhead

#### 44<sup>th</sup> Annual NDIA Gun & Missile Systems Conference

April 6 – 9, 2009 Kansas City, MO

Renita Friese – General Dynamics Ordnance & Tactical Systems Tracey Westmoreland – Lockheed Martin Missiles & Fire Control





# **GMLRS Unitary Team**



- Prime Contractor Lockheed Martin Missiles & Fire Control
- General Dynamics Ordnance & Tactical Systems
- Aviation & Missile Research, Development, & Engineering Center
- Program Executive Office Missiles & Space
- Precision Fires Rocket & Missile Systems Project Office







### **GMLRS Unitary System Description**

- Joint Expeditionary
- All Weather, Precision Guided Rocket
- 70km Range
- 196 lb Unitary Warhead
- Tri-Mode Fuze
- Low Collateral Damage
- Target Sets
   ¬ Buildings
  - Dullulligs
    Z Soft Torge

  - Irban Structures
  - ↗ Air Defense Surface Targets









### **GMLRS in Theatre**



- As of 17 February 2009, 1109 Rockets Fired in Theater
- 100% Mission Success
- "70 Kilometer Sniper Rifle"



**GMLRS Unitary in Iraq** 







### Past, Present & Future









### Warhead

- Evolved from 6-inch to 3-inch Fuze
   Design
- Internal Scored Case to Control Fragmentation to Minimize Collateral Damage
- Warhead Weight 196 lbs
- Approximately 50 lbs of High Explosive
- Won Competition in 2006 for Follow-on Production Contract









# **Modeling & Simulation**



- OTI\*HULL GD-OTS Proprietary Hydrocode Software
  - Simulates Weapon Problems from Target Interaction through Functioning
- Also use Hydrocode to Predict Insensitive Munitions (IM) Results
  - Bullet Impact, Fragment Impact, Sympathetic Detonation





# **Environmental Qualification**



- Warhead Passed Environmental Qualification
- Tests:
  - → Vibration
    - Transportation, Tactical, Flight
  - Temperature Shock
  - Rail Impact Shock
  - Handling Drop Shock
  - I Launch Shock





### Performance Results -Effectiveness



Five JMEM Arena Tests Conducted

 Fragments Recovered & Weighed
 Recovery Locations were Recorded
 Fragment Velocities Calculated

Warhead is Lethal Against Target Set









#### Performance Results -Penetration



 Earth & Timber Bunker Target

 ¬ Successfully Penetrated Target During Development Tests



Earth & Timber Bunker Pre-Test Setup



Earth & Timber Bunker Post-Test





### Performance Results – Insensitive Munitions



| Insensitive Munitions<br>Verification and<br>Investigations | MIL-STD-2105/STANAG<br>Description                                                       | Achievable Results Given in STANAG Type Classification |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Intermediate Cook-Off                                       | Remote Fire Not in Direct Contact<br>with Warhead: 50°F (10°C) per<br>Hour Heating Rate  | Type V (SDD Testing)<br>Type III (Subsequent Testing)  |
| Fast Cook-Off                                               | Flames in Direct Contact with<br>Warhead: Average Flame<br>Temperature ≥ 1600° F (871°C) | Type IV (SDD Testing)<br>Type IV (Subsequent Testing)  |
| Bullet Impact                                               | .50-Caliber Bullet Fired into<br>Payload Section of Explosive                            | Type V (SDD Testing)<br>Type V (Subsequent Testing)    |
| Fragment Impact                                             | Land-Attack Threats: 16.2 gram<br>Steel Fragment Impacts Munition<br>at 6000 ft/s        | Type V (Subsequent Testing)                            |
| Sympathetic Detonation                                      | Propagation of Detonation from<br>One Payload Section to Another                         | Type I (Subsequent Testing)                            |





## Intermediate Cook-Off Test



- Test Conducted IAW STANAG 4382 Slow Heating Test for Munitions
- Enclosed in Oven Housing
- Ramp Rate 50°F/hr
- Blast Gauges and Witness Plates Showed no Evidence of Detonation







### Fast Cook-Off Test



- Test Conducted IAW STANAG 4240 Liquid Fuel Fire Tests for Munitions
- Approximately 1000 Gallons Kerosene in Fuel Pans
- Internal Warhead Components Expelled from Case







# IM Testing – Bullet Impact



- Test Conducted IAW STANAG 4241 Bullet Attack Test for Munitions
- .50 Caliber Type M2 Armor Piercing Projectile
   7 2840 ft/sec
- Aim Point Center of Warhead
- No Exit Bullet Hole
- Blast Gauges and Witness Plates Showed no Evidence of Detonation





### **GMLRS Warhead Performance**



| Requirements                  | Performance                                                                                                                                                                                      |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Effectiveness                 | Warhead Lethal Against Target Set                                                                                                                                                                |
| Penetration                   | Warhead Penetrates Earth & Timber Bunker Target                                                                                                                                                  |
| Insensitive<br>Munitions (IM) | <ul> <li>Type V – Bullet Impact</li> <li>Type IV – Fast Cook-Off</li> <li>Type III – Intermediate Cook-Off</li> <li>Type I – Sympathetic Detonation</li> <li>Type V – Fragment Impact</li> </ul> |





# **Design Challenges**



- Insensitive Munitions
  - Passing Fast and Slow Cook-Off Proved to be a Challenge
    - Pressure Built up in Warhead Nose
    - Warhead Case Structural Integrity did not Allow Venting in Nose





# Acknowledgements



- COL David Rice, Precision Fires Rocket and Missiles Systems Project Manager
- LTC Mark Pincoski, Precision Guided Rockets/Missiles Product Manager
- Darren McConnell, Deputy Product Manager for GMLRS
- Larry Grater, System Engineer Principal
- Tracey Westmoreland, Mechanical Engineer Staff



