Qualification Testing of High Rate of Fire Gun Systems

Presented by:
Dave Maher/Jim Talley
Project Engineer – Joint Strike Fighter Gun Systems
General Dynamics Armament & Technical Products
Burlington, Vermont USA
802-657-7113 dmaher@gdatp.com
Presentation Outline

- Qualification Methodology
- Gun System Qualification Test Approach
- JSF CTOL Qualification Results
- Conclusions
What is Qualification?

- Qualification is a process of verifying that a design meets its allocated requirements.
- Qualification is usually done in a systematic manner, starting with lower level components and subsystems, and working up to the system level.
System Perspective

The distinction between a system and a subsystem is a matter of perspective.
Where does Qualification fit?

- Requirements
 - From Customer
- Design
- Fabricate
- Engineering
 - Test
- Qualification
 - Test
- Deliver to Customer
Qualification Methods

- Analysis – Technical assessment using detailed calculations, including computer modeling.
- Demonstration – Simple, uninstrumented go-no go result
- Examination – Visual inspection
- Similarity – Based on qualification results of a similar product in a similar environment.
- Test – Measurement of performance while operating the system
Typical Gun System Architecture

- Gun System
 - Gun Assembly
 - Gun
 - Transfer Unit
 - Solenoids
 - Prox Sensors
 - Ammunition Handling System
 - Power Transmission
 - HyDrive
 - Prox Sensors
 - Driveshafts
 - Gearbox
 - Gun System Control Unit
 - Hardware
 - Software

Lower Level Qualification
JSF CTOL Example

GSCU (Gun System Control Unit)

GAU-22/A Gun

Power Transmission

AHS
GSCU HW Qualification Tests

- Electrical Characteristics
- Electromagnetic Interference
 - Conducted Emissions and Susceptibility
 - Radiated Emissions and Susceptibility
 - Electrostatic Discharge
- Mechanical
 - Shock and Vibration
 - Humidity, Rain, Ice
 - Altitude and Air Pressure
 - Corrosion
GSCU Software Qualification

- All Software Requirements Verified
- Tests conducted with prototype GSCU and “Software Testbed” that emulates the Gun System.
- Testing conducted independently.
Proximity Sensors

- Electrical / Functional Characteristics
 - Sensing Range
 - Temperature
 - Voltage Levels

- EMI
 - Conducted Emissions and Susceptibility
 - Radiated Emissions and Susceptibility
 - Electrostatic Discharge
Hydraulic Drive Motor Qualification Tests

- Performance Mapping
 - Temperature, Pressure, Load
 - Speed and Power
 - Rounds to Stop
- Impulse Pressure (100,000 cycles)
- Burst Pressure
- Warming Flow
- Shock and Vibration

Deceleration:
Upon removal of 28V from the forward solenoid, the drive shall decelerate the system to zero rate in a minimum of 6 rounds and a maximum of 0.4 seconds.

Deceleration to Stop:
Upon removal of 28V from the reverse solenoid, the drive shall decelerate the system to a stop in 2.0 to 4.0 rounds and a maximum of 0.3 seconds.

Removal of 28V from Reverse Solenoid.
JSF System Level Qualification Tests

- 36,000 Round Durability Test (2X Life)
 - Fatigue
 - Wear
 - Barrel Performance
 - Hot and Cold Temp
 - Clearing
 - Dispersion

- Environmental Test
 - Shock,
 - Vibration
 - Limit Load (centrifuge)
JSF CTOL Fire Test Set-Up
36,000 Round Endurance Test – Key Results

- Outstanding reliability demonstrated.
- No gun jams occurred in over two lifetimes of fire testing.
- No significant increase in dispersion after two lifetimes.
- No broken parts
 - Fatigue cracks were found on some parts, but none were beyond acceptable limits.
 - Where possible, design changes were implemented to eliminate cracking.
Environmental Test Set-Up
Environmental Test – Key Results

- JSF CTOL Gun System passed all environmental test requirements.
- Dummy ammunition failure (separated nose cone) damaged Ammunition Handling System.
- Stronger spring implemented in Load Access door latch.
- Pin in slot mounting interface strengthened to reduce fretting wear.
- Internal parts modified to eliminate minor cracking.
Conclusion

- A systematic approach resulted in a highly successful qualification test, as a prelude to flight test.
- Results of qualification testing frequently lead to design improvements.
- Overall, the JSF CTOL Gun System demonstrated exceptional reliability during qualification testing.
- Lessons learned are being applied to the Missionized Gun System, scheduled to begin qualification testing later this year.

A rigorous qualification program results in a better design and reduces risk at the next level of test.