

Modeling and Simulation Advances in Large Caliber Muzzle Brake Development

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

NDIA Gun & Missile Systems Conference & Exhibition April 6-9, 2009, Kansas City, MO

> Daniel L. Cler Robert A. Carson Mark A. Doxbeck Jeffrey M. Greer Mark D. Witherell

Approved for public release; distribution is unlimited. Case 09-9039. 10 March 2009.

- Basic Muzzle Brake Design Principles
- Impulse Reduction Modeling
- CFD Based Blast Modeling
- Empirical Blast Modeling
- One-Way Structural-Thermal Modeling
- Two-Way Fluid-Structure Modeling

RDECOM Muzzle Brake Design Principles

RDECOM M119 - M20A1 Baseline Impulse Study Unsteady 3-D CFD Simulation Results

44

CFD Based Blast Modeling

Blast - Moving Shock Wave

- **Propagates at Faster than Speed of Sound**
- Very Fine Structures (0.5 mm thick)
- Very High Pressures (7,000 15,000 psi at muzzle)

CFD Requirements

- Shock Wave is a Discontinuity in Flow Field
- Requires

RDECO

- Very Fine Grid
- High-Order Spatial Resolution
- Very Large 3-D Flow Domains
- Fixed Grids are Not Feasible for 3-D Gun Simulation
- Higher Order Solvers Typically Not Stable at Gun Pressures
- **Dynamic Grid Adaption is Only Realistic Option**
- Highly Specialized Codes is a Second Option

Dynamic Grid Adaption

Refine and Coarsen Mesh as Blast Wave Propagates Through Flow Domain

Based on Flow Field Gradients and Properties

Solution Based Automatic Adaption roved for public release; distribution is unlimited. Case 09-9039. 10 March 2009. TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

CFD Blast Analysis – Fluent 7.62 NATO G3 with DM41 Round

RDECOM

Experiment

Ref. <u>Gun Muzzle Blast and Flash</u>, Progress in Astronautics and Aeronautics, Vol. 139; Klingenberg, Gunter, Heimerl, Joseph M., Seebass, A. Richard Editor-in-Chief, AIAA Approved for public release; distribution is unlimited. Case 09-9039. 10 March 2009. **TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED**. BWIP Mesh and Solution-based Adaption Parameter

Solution-based Blast Wave Identification Parameter (BWIP)

- ANSYS-Fluent CFD Solver
- Add-on to Improve Adaption
- Find Shock Location
 - Mach Number Near 1
 - Large Pressure Gradient
- Control Adaption

RNEHN

- Better Coarsening
- Better Refinement
- Reduce Total Cell Count
- Reduce Solution Time
- Improve Quality With Finer Resolution

FCS MCS Chassis

BWIP Validation Overpressure for XM-360 on FCS MCS Chassis

RDECOM)

BWIP Validation Dynamic Grid Adaption – XM360

RDECOM

BWIP Validation Peak Overpressure Contour Plot – XM360

RDECOM

BWIP Validation Dynamic Grid Adaption – XM360

RDECOM

•2-D simulation of Fixed Mesh, BWIP and Advanced BWIP.
•Advanced BWIP is one order of magnitude faster than a fixed mesh.
•Extrapolating to 3-D, we can see BWIP would be two or more orders of magnitude computationally faster than fixed mesh

Empirical Blast Wave Modeling 3-D Fansler Blast Code

- •Simplified Empirically Based Scaling Based On Fansler Blast Code
- •Mat-Lab Based GUI Front End
- Input Parameters
 - •Gun Geometry, Elevation and Azimuth
 - •Vehicle and Ground Reflection Planes
 - Interior Ballistics
 - •Muzzle Brake Efficiency

XM-324 NLOS-C Muzzle Brake Thermal-Structural Analysis

- 3.5 Caliber Optimized Muzzle Brake
 - Maximum Efficiency
 - Short Length
 - Minimum Weight

XM-324 NLOS-C Muzzle Brake Thermal-Structural Analysis

- High rate of fire cannon
 - 6 rounds/minute
 - Standard magazine
 - Standard reload
- Determine Temperature Field Prior to Last Shot
- Reduced Structural Properties
- Unsteady Structural Model For Last Shot
- Determine Peak Stresses and Structural Integrity
- Reduce Muzzle Brake Material In Low Stress Regions

- Steady-State Fluent Analysis
 - Vary Muzzle Pressure
 - Vary Wall Temperature
- Output
 - Surface Average Heat Transfer
 - 33 Separate Model Surfaces
- Utilizes Designed Experiments to Make Polynomial Models

Contour Plot of Surface Total Temperature

Step 2: Develop Polynomial Models from Fluent Heat Transfer Data

- Develop a single cubic polynomial model of surface heat transfer for each of the 33 sub-surfaces.
 - Based on Muzzle Static Pressure
 - Based on Surface Wall Temperature
- Example polynomial model shown below for one surface.

Step 3: ABAQUS Unsteady Thermal

RDECOM

Step 3: ABAQUS Unsteady Thermal Surface Temperature vs Time

- Temperature and pressure patched into gun barrel based on projectile ready to enter muzzle brake.
- Flow allowed to expand using unsteady, coupledexplicit inviscid solver.
- Surface average pressure vs. time recorded during run for multiple surfaces.
- Used as input for unsteady ABAQUS structural model.

Step 5: ABAQUS Unsteady Structural Input Temperature Conditions

4 4

Step 5: ABAQUS Structural FEA Peak Stress Results

Results: Von Mises Stress

008: 38_04x5_96abar_8ta-208ar-08Q.odb Abagan/Explicit Venion 6.7-2 Fri Mar 21 11:03: 36 Eastern Deplight Time 2008

Results: Factor of Safety

008: J0_04n5_96shot_05x-20Mar-08Q.odb Abaqua/Explicit Version 6.7-2 Fri Mar 21 11:30:36 Eastern Daylight Time 2008

Step: Sezzion Step, Step for Viewer non-persistent fields Sezzion Frame Primary Van Factors_of_Safety Deformed Van not pat Deformation Scale Factors not set

008136_04x5_94x5x4_20Mar-08Q.x4b Abagan/Explicit Varian 6.7-2 Fri Mar 21 11:00:04 Eastern Deplight Time 2008

Stap: Secole Stap, Stap for Viewer non-persistent fields Resilen Frame Primary Van Factor, of Safety Deformati Van het set Deformation Scale Factor net per

- Fluid Domain Simulated with ANSYS CFX
- Solid Domain Simulated with ANSYS Mechanical
- Full Two-way Coupling with ANSYS Multi-Physics

RDECOM

RDECOM ANSYS Mechanical Multi-field Solver (

Mesh and Setup

- Solid mesh developed in ANSYS Workbench.
- Fluid mesh developed in ICEM CFD.
- Coupling and interfaces of two meshes done in ANSYS Workbench
- Pulse source term used in CFX to simulate gun firing.
- Structural deformation passed between to solvers.
- Multi-round mission simulated

Workflow Snapshots Mechanical Simulation Setup

Flexible Dynamic Time: 1.e-006 s	VII vii
6/19/2008 3:05 PM	
Devenden / Conditions Chauve	
Boundary Conditions Shown	
Analysis Type : Flexible Dynamics	
Coupled Field Element	
Solve for thermal and structural stresses	
0.000 0.450 0.900 (m) Z	
0.225 0.675	87) 87

Kotional Quality Association

Workflow Snapshots Mechanical Simulation Setup

Total Deformation Type: Total Deformation	ANSYS vii
Unit: m	
Time: 70	
7/25/2008 3:39 MM	
4.6474e-5 Max	
4.131e-5	
2.5819e-5	
- 1.5491e-5	
- 1.0328e-5	
5.1638e-6	
	Y
	_ ∔
	•
	×

Conclusions

- Advanced Design Tools:
 - Impulse modeling:
 - Full 3-D CFD analysis capable of predicting impulse with high degree of accuracy.
 - Blast modeling:
 - Low fidelity, quick estimates of 3-D blast fields with empirical models.
 - High fidelity models of complex 3-D blast fields with BWIP Based CFD models.
 - FSI:
 - Complex thermal-structure forced and natural convection modeling.
 - Full two-coupled structural response modeling of gun and muzzle brake structures.
- Results:
 - Higher efficiency, lower blast, lighter weight muzzle brakes.

