

U.S. Army Research, Development and Engineering Command

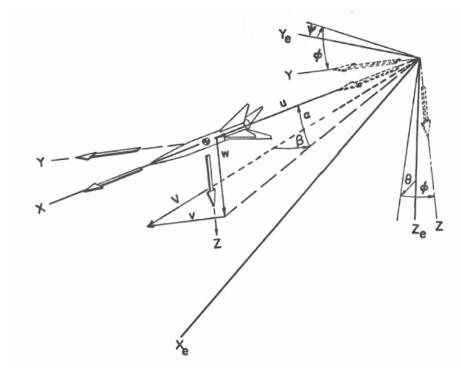
Trajectory Matching Procedure/Practice for a Guided Projectile using MATLAB/Simulink

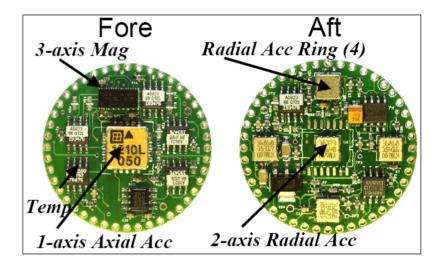
TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Yin Chen (x-4945) Thomas Recchia (x-8853) AEROBALLISTICS DIVISION

October 21-22, 2008

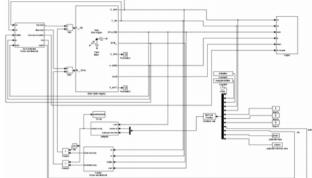
Process Overview

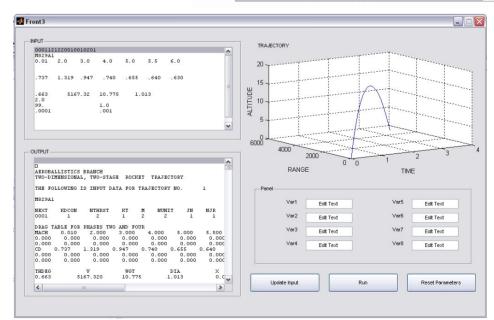

- Objective: to Obtain a High Fidelity Simulation of Guided Munitions.
 - Statistical Testing is too expensive
 - Predict Performance
 - Conduct Root Cause Analysis

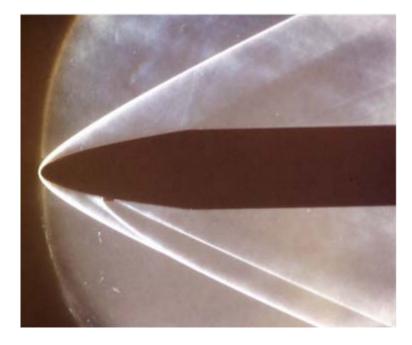

- Basic Forces and Moments Acting on the Body
 - Aerodynamic Forces
 - Aerodynamic Moments
 - Gravity
- Effects due to External Conditions
 - Wind
 - Pressure/Altitude
 - Temperature
 - Location
- Types of Projectiles
 - Spinners
 - Finners

- Sensors
 - Measure Location, Speed, Orientation
 - IMU
 - Accelerometers
 - Rate Gyros
 - GPS
 - Radar
 - Inclinometers
 - Solar Sondes
 - Magnetometers
- Control Mechanisms
 - Correct the Projectile's Path to Guide to a Goal
 - Canards/Fins
 - Rocket Thrusters
 - Heating/Cooling of Ambient Air
 - Ventilation Control through Projectile Body
 - Projectile Skin Morphology (Flexures)
 - Microactuators

Example: ARL Sensor Suite Board




Pre-Test Modeling



- Physical Models
 - CAD (Pro Engineer)
 - PRODAS
 - Missile DATCOM
 - CFD
 - Wind Tunnel Modeling

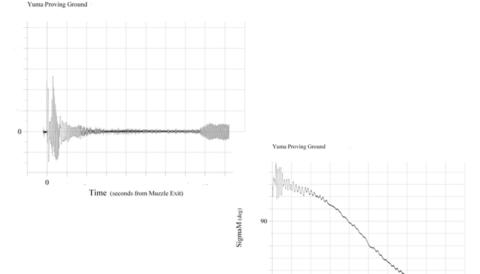
- Trajectory Simulations
 - Aero1
 - Traj
 - Tela
 - MATLAB/Simulink

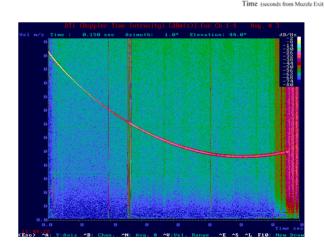
Pre-test Modeling in Practice

• Wind Tunnel Produced:

RDECOM

- Static Coefficients
 - C_x
 - C_{Nα}
 - C_{ma}
 - C_{lo}
- Dynamic Derivatives
 - C_{/p}
 - C_{mά} +C_{mq}
- MATLAB 6-DOF
 - Wind Tunnel coefficients were used to create a trajectory

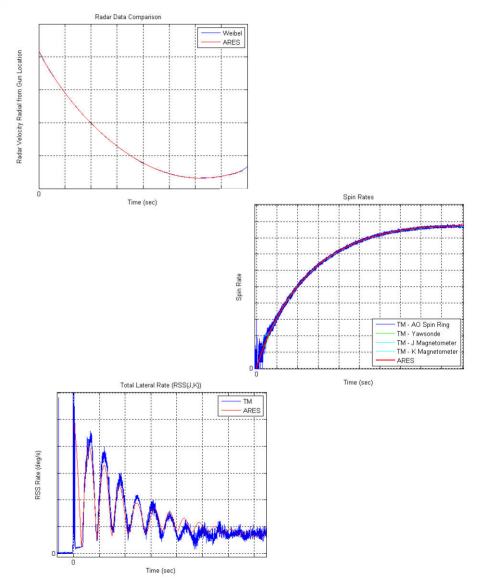

- CFD Produced:
 - Static Coefficients
 - C_x
 - C_{Nα}
 - C_{mα}
 - C_{lo}
 - Dynamic Derivatives
 - C_{npα}
 - C_{/p}
 - C_{mά} +C_{mq}



Data Acquisition/Reduction

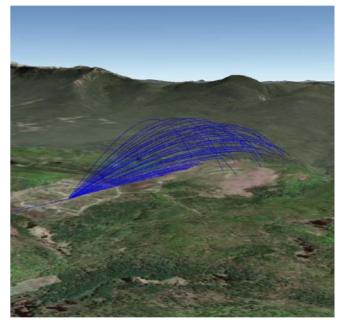
- Wind Tunnel Test
 - Entire Range of Mach Numbers
 - Various Angles of Attack
 - Compared with CFD and aero prediction code results
- Firing Test
 - Acquires "Real" Data
 - Mass Properties
 - Pressure Gauge Data
 - Muzzle Velocity (Weibel Radar)
 - Tracking (Weibel Radar, MTS Radar)
 - ARL Sensor Package
 - Rate Sensors Data
 - Magnetometer Data
 - Accelerometers
 - Solar Sondes
 - Exact GPS Location of Gun and Impact
 - Met Data for Time of Fire

- Initial conditions are adjusted as closely as possible to the day of fire.
 - Met Data
 - Mass Properties
 - Initial Velocity
- Simulink 6DOF is run to compare the output of the simulation with the actual performance of the round
- Form Factors are applied by hand to adjust the performance of the simulation to coincide with the actual trajectory
 - Form Factors are coefficients applied to the variables governing the projectile's performance.
 - Adjustment starts with the earliest point in the trajectory and moves forward with time.
 - Adjustment cycles through:
 - Position/Velocity Matching
 - Magnetometer Matching
 - Spin Rate Matching


Data Reduction in Practice

Reconcile CFD Outputs with Wind
Tunnel Test Results

RDECOM


- Modify Variables if Necessary
- Chose One Set or Average Both if Numbers are Close
- Firing Test Data
 - Corrected Acceleration and Rates Loaded into MATLAB
 - Centered Smoothing Algorithm used to Remove Noise
 - Interpolate Different Sets of Data into Same Time Step
 - Root Sum Squared Accelerometer and Rate Data
 - The RSS is Examined to find Maneuver Times
 - Met Data is Loaded into the Simulation

Benefits of a High Fidelity Simulation of Guided Munitions

- Immediate
 - Decrease design turn-around time
 - Higher fidelity to actual round in progress
 - Better prediction of subsequent firing tests
 - Gauges difference to goal
 - Power/effectiveness of unit maneuver
 - Number of maneuvers required to reach target
 - Suggestions for design improvement
- Future
 - Safety Danger Zone analysis
 - Root cause analysis for discrepancies
 - Affirmation of design capabilities
 - Decrease number of rounds fired to generate firing tables
 - Assist users in developing doctrine

- MATLAB/Simulink has been used to obtain a high fidelity simulation of a guided munition
 - Model has successfully predicted performance
 - Aiming
 - SDZ verification
 - Model was used to reproduce unforeseen projectile motion
 - Implemented Monte Carlo analysis to assist GNC development
- This analysis can easily be applied to future programs
 - MATLAB/Simulink model is easy to modify
 - Can support unique configurations/conditions
- For more information, contact the AEROBALLISTICS DIVISION, METC

QUESTIONS?