

BTERM II -- 5" Gun Launched Projectile

44th Annual Gun & Missile Systems Conference and Exhibition

8 April 2009

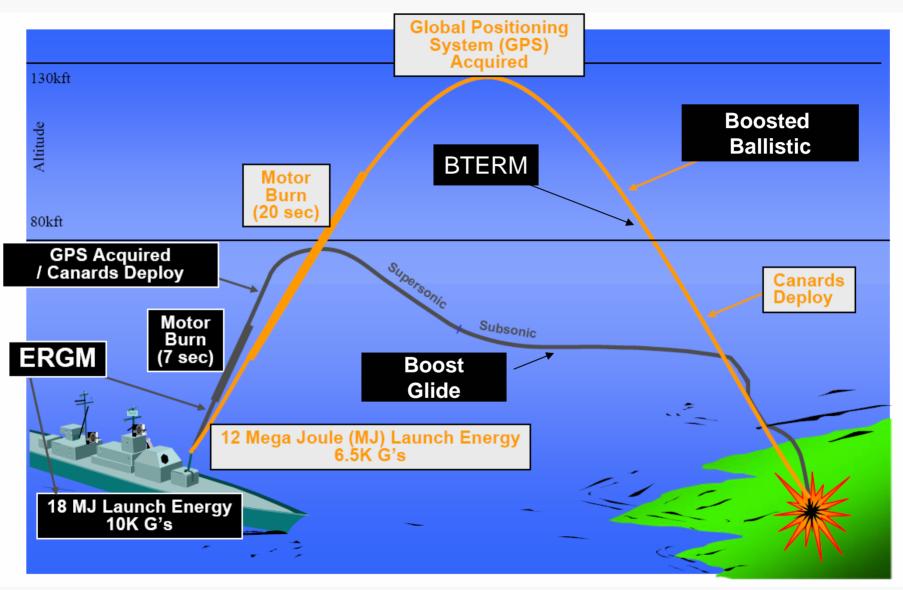
Michael Lukas Naval Surface Warfare Center Dahlgren Division Dahlgren VA <u>Michael.lukas@navy.mil</u> 540-653-8294

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Approved by Michael A. Till, Deputy Department Head Engagement Systems Department

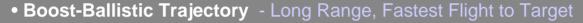
Agenda

- System Overview
- Major Subsystems
 - Rocket Motor
 - Low Cost Guidance Electronic Unit (LCGEU)
 - Canard Actuation System
 - Warhead
- Recent Tests
- Program Accomplishments



Ballistic Trajectory Extended Range Munition (BTERM)

- Flies a primarily ballistic path, correcting for
 - Gun pointing errors
 - Winds aloft
- Compatible with MK45 Mod2 and Mod4 guns
- Technology demonstration effort funded by the Navy
- Proven success in boosted and un-boosted guided flight tests



BTERM Mission Profile

System Overview

- Rolling Airframe with Single-Axis Control Small Delivery Errors
- Rear Obturation Simple, Robust Rocket Motor
- High-Density Frag Warhead Lethal Across Target Set
- GPS with Anti-Jam Short Time in Jammed Zone
- MEMS Accelerometers/Rate Sensors Low Cost, Rugged
- Compatible with any gun modified for precision projectiles MOD2 and MOD4

Rocket Motor

- End-Burning with Centerport Inhibitor
- SAA-139 Propellant
- Titanium Beta-C Rocket Motor Case

TFA (Tail Fin Assembly)

- Blast Tube/Rocket Motor Nozzle
- ISD (Ignition Safety Device)
- 8 Taper Fins
- Fin Locking Mechanism

GEU (Guidance Electronics Unit)

- ISA (Inertial Sensor Assembly)
- GPS Module/Anti-Jam Module
- Flight Processor Module
- PČE (Power Conditioning Electronics) and I/O

Fragmenting Warhead

- Warhead
- PBXN-9 Explosive
- Warhead S&A (Safe & Arm)
- Booster Cup and Detonator

CAS (Control Actuator System)

Fuze

Gun Interface

HOB Sensor

Safe Separation

- COTS Servo Motor
- Battery Pack (8 Storage Batteries)
- Canard Deployment Mechanism

DISTRIBUTION STATEMENT A

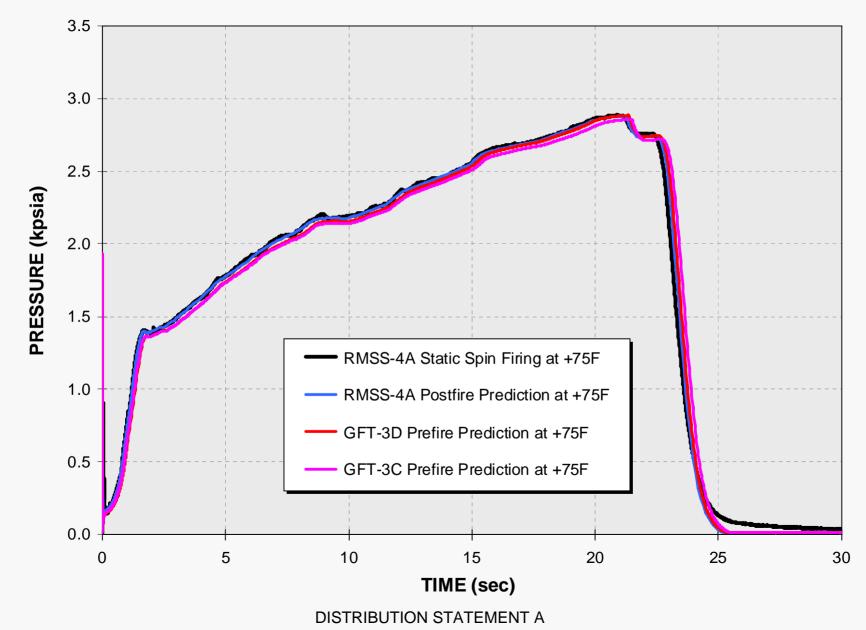
Rocket Motor

- Many subsystems on BTERM II had been proven during BTERM I and ANSR which were predecessors to BTERM II
- Changes were implemented in the manufacturing processes towards a more producible design
- The rocket motor was a pacing factor that required significant and unplanned attention
- Two areas were improved over a 2 year span and ultimately proven successful
 - Over pressure during testing
 - Nozzle burn-through

BTERM II Rocket Motor Summary

• BTERM II motors have exhibited two different anomalies

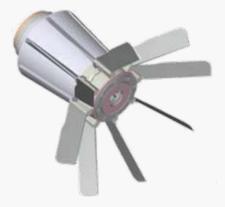
- Over pressurization
- Blast tube insulation burn through
- These only occurred in flight or spin tests, not static

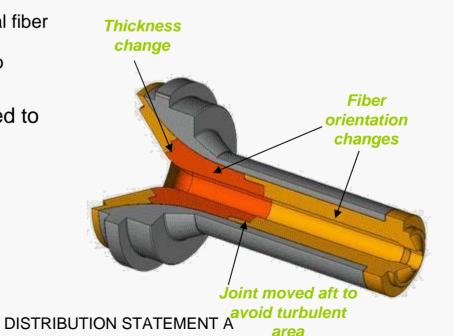

 Anomalies are associated with unanticipated interaction between environments and process/material variabilities or design margins

• Overpressurization can be caused by:

- Excess propellant surface area
- Nozzle area reduction/blockage
- Change in propellant combustion properties
- Testing and analysis quickly reduced the cause to excess surface area
 - Manufacturing techniques were modified
 - Rocket motor burn was consistent

Performance Predictions – Pressure vs. Time

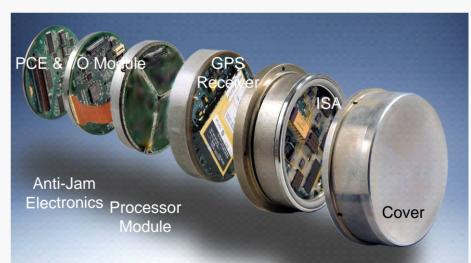



8

Nozzle Improved to Provide Thermal Margin

Nozzle Insulation Improvements

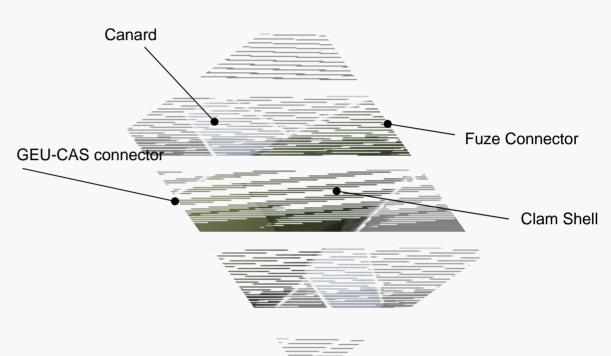
- Conducted detailed review with NSWCDD on 01 Jun 06
 - Agreement on changes & test plan
 - Team agreed on a material fiber orientation changes to approach and blast tube to resist erosion
- Approach thickness changed to better resist charring / heat
- Spinning static fire tests validated changes
 - Erosion analysis added confidence



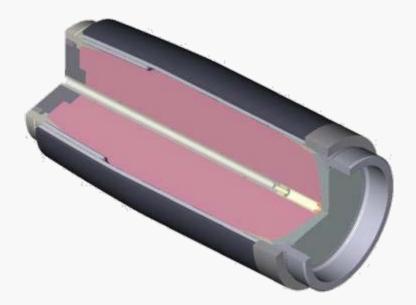
Low Cost Guidance Electronic Unit (LCGEU)

WARFARE CENTERS DAHLGREN

- Developed by Draper Laboratory
 - Navy funded
 - Originally developed as risk reduction for ERGM
 - Rockwell-Collins SAASM GPS receiver
 - •Direct-Y acquisition
- Survives and operates in gun environments > 10,000 g's
- Deep Integration GPS anti-jam algorithms
 - Allows inexpensive commercial MEMS gyros and accels
- Proven success and robustness in laboratory and live fire tests
 - Multiple platforms
- Guidance control laws are robust to system errors


BTERM II Low Cost Guidance Electronics Unit is a Mature Demonstrated Design

DISTRIBUTION STATEMENT A


CAS Configuration and Performance History

- Improved design for interconnect to GS and Fuze sections
- Optional AI or Steel clam shells
- Proven battery pack in numerous flight tests
- Current design proven in flight tests
- Robustness demonstrated in GFT301-1C
- Added current limit to protect battery from over-current

Warhead Configuration and Performance History

- Case showed excellent results in crush test
- System effectiveness, based on results of first warhead arena test, exceeded system performance requirements
- Recovered fragments demonstrated integrity with respect to explosive launch

Warhead Components	Description	Weight
Composite	Graphite	0.9 lbm
Explosive	PBXN-9	
Booster Charge	PBXN-11	0.05 Ibm
Initiator	RP-80	N/A

Guided Flight Results

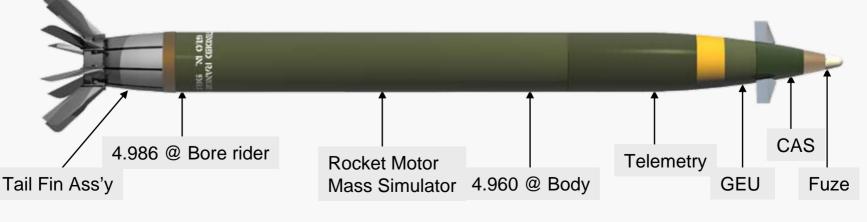
- GUFT-1
 - February 2006
 - Guided Unboosted Flight Test
 - 8.7nmi@ Yuma Proving Grounds-> 7.3nmi sea level
 - 5 foot miss distance from target
- GFT-301
 - September 2008
 - Guided Flight Test
 - 54nmi@ White Sands Missile Range-> 49nmi sea level
 - 15 foot miss distance from target

GUFT-1 Mission Overview

Test:

- Location: Yuma Proving Ground (YPG)
- Test dates 08 February 2006

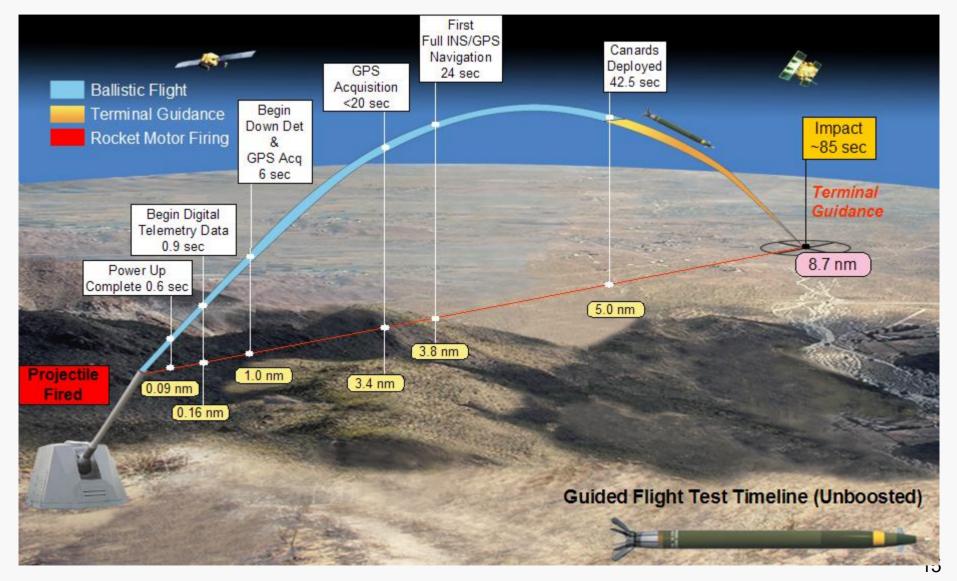
Test Conditions:


- 5"/62 Caliber Gun (S/N 17499)
- NACO Propellant Charges
- Muzzle Velocity = 2,170 ft/sec
- Expected Launch Accel = 7,200 G
- GUFT-1/ODT QE = 60.5°

Test Configurations:

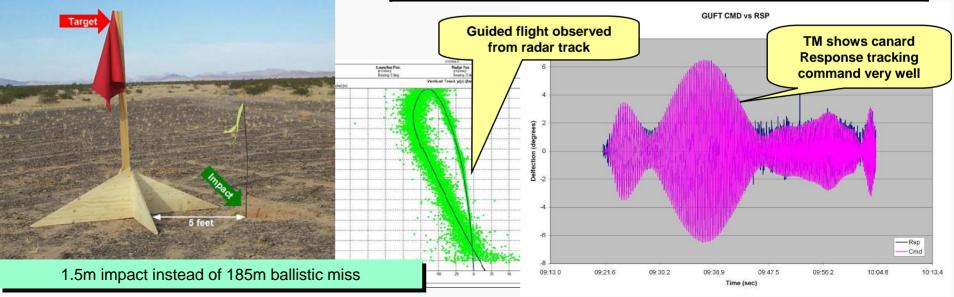
- 3 Baseline Obturated TCD Slugs
- 1 Guided, Unboosted Flight Test (GUFT-1)

Instrumentation:


- 3 M11 and 2 Piezoelectric Pressure Sensors within Propelling Charges
- Barrel Pressure Data
- Camera Coverage at Gun and Target
- Trajectory and Muzzle Radar
- Telemetry for GUFT-1

DISTRIBUTION STATEMENT A

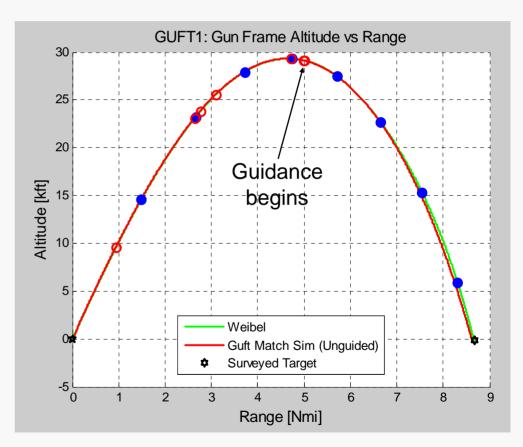
February 8, 2006 Guided Unboosted Results



DISTRIBUTION STATEMENT A GUFT-1 Mission Objective Results

- New mag based down determination successful
- GPS acquisition successful
- Canard deployment successful
- Canard control successful
- Hit the TARGET!

Test Objective	Criteria	Results
Evaluate short range GNC algorithms	Successful acquisition of telemetry and radar data	Passed
Demonstrate CAS performance with COTS actuator	COTS actuator demonstrates the ability to control the flight trajectory using commands issued by the GEU	Passed


DISTRIBUTION STATEMENT A

GUFT 1 – Flight Test Results

<u>GNC</u>

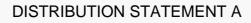
- GPS
 - Acq at 20 sec and held throughout
- Improved down determination enables early navigation
- GEU sensors survived launch and performed as expected
- Guidance/control commands issued starting at 42 sec
 - CAS response good
 - 5 ft miss at target
- Impact at 86 sec at 8.7 nm

GFT-301 Mission Overview

Test:

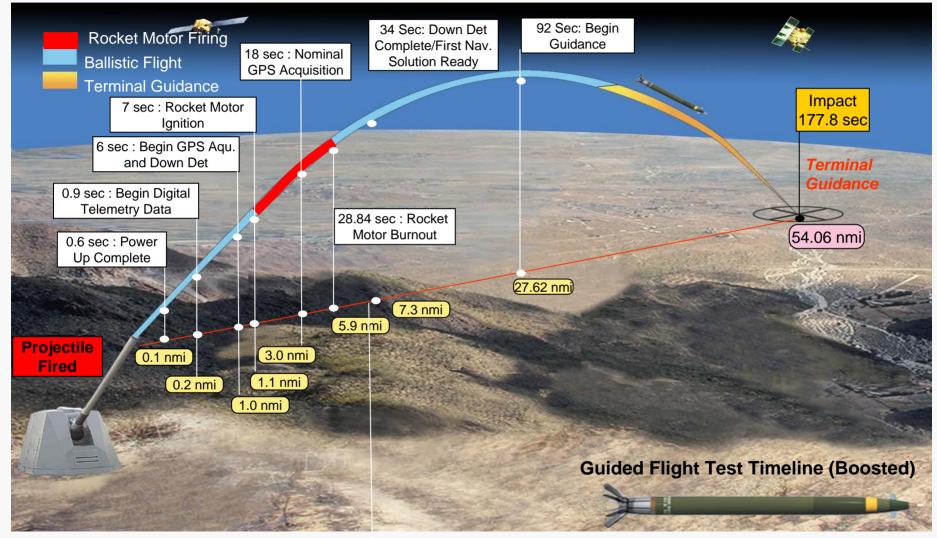
- Location: White Sands Missile Range (WSMR) – Site L531
- Test Date 29 Sep 2008

Test Conditions:


- 5"/62 Caliber Gun (S/N 17499)
- NACO Propellant Charges
- Muzzle Velocity = 2170 ft/sec
- Expected Launch Accel = 7200g
- Projectiles QE ~ 59.3°
- GFT-301 long range ~ 54 nmi

Test Configurations:

- 2 TCD Slugs + 1 backup
- 2 GFT-3 Guided, Boosted Flight Test
- 1 EET-3 Guided, Boosted Flight Test

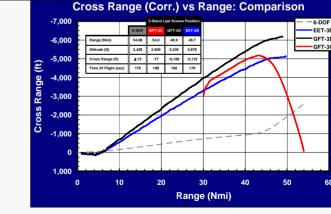

Instrumentation:

- 3 M11 and 2 Piezoelectric Pressure Sensors within Propelling Charges
- Barrel Pressure Data
- Camera Coverage @ Gun & Targets
- Trajectory & Muzzle Radar
- ATK Telemetry

GFT-301 Flight Profile

Recent BTERM Success

Sept 2008 test success


- Achieved 54 nmi range
 - Full duration rocket motor burn
- 4.9 m miss distance
 - Acquired 10 satellites in direct Y
 - Corrected 5 nmi of range error
 - Corrected 0.9 nmi of cross range error

Altitude (Corr.) vs Range: Comparison 120,000 EET-3 100.000 GFT-30 GFT-30 80,000 Altitude (ft) 60,000 40.000 Range (Nmi) Altitude (ft 20.000 Cross Range (ft ±18 Time Of Elight (s 20 40 Range (Nmi)

GFT-3C Guided To Target

All Three Test Projectiles On Very Similar Trajectories

Recent Success Validates 5" Gun Solution for NSFS

DISTRIBUTION STATEMENT A

Program Accomplishments

- Demonstrated short and long range guidance accuracy
 - 8-nmi guided flight test within approximately 5-feet of the intended aim-point
 - 54-nmi guided flight test within approximately 15 feet of the intended aim point
 - Low Cost Guidance Electronics Unit (LCGEU) continues to demonstrate robust performance meeting all requirements
 - 6-DOF simulation accurately predicts actual guidance performance
 - CAS (w/COTS components) provides sufficient control authority to meet guidance accuracy requirements
 - Tail fin deployment and locking
 - Electronic ISD demonstrated

Program Accomplishments

- Demonstrated subsystems
 - Guidance, navigation and control subsystem and algorithms
 - Composite blast fragment warhead
 - Single Axis CAS including the COTS actuator
 - Electronic Ignition Safety Device
 - Reliable rocket motor performance
- Demonstrated lethality of warhead
 - Arena tests at NSWC-DD demonstrated lethality meets or exceeds requirements against the ERM target set
 - Actual performance better than simulation/model
 - Crush test demonstrated strength exceeds requirement for BTERM launch environment of ~7500-g
- Demonstrated the data communications interface (DCI)
 - Benchtop tests with ERM setter