

Improved LW30 Ammunition via Ignitability and Ballistic / Chemical Stability of ECL[®] (Extruded Composite Low Vulnerability) Propellant

1

Kelly Moran, Doug Messner (ATK) Bishara Elmasri, Chester Topolski (ARDEC) Ulrich Schaedeli, Dominik Antenen, Kurt Ryf (Nitrochemie)

> NDIA Conference 44th Annual Gun & Missile System Conference Kansas City, 7th April 2009 "Approved for Public Release; Distribution Unlimited"

Benefits of ECL[®] Propellant

Improved Characteristic's of ECL

Translates to...

High energy density formulations	Improved ballsitc performance and efficiency		
High thermal conversion	Flat, tuneable ballistic profile across temperatures		
Tuneable performance and force	Improved dispersion, repeatability		
	No migration of NG into cases		
No mobile plasticizers, non-nitrogylcerin	Improved system compatability		
	Improved safety during manufacture		
Enhananced IM properties	Higher cook off temps - improved crew survival		
	Less sensitive/no reaction to impact		
Non-toxic, "green" formulation	Better for the environment		
	Better for the user/manufacturer		
Chemical stability	Ammunition can be deployed to extreme climates		
Ballistic stability	with no degredation in performance		
	Longer service life for ammunition		

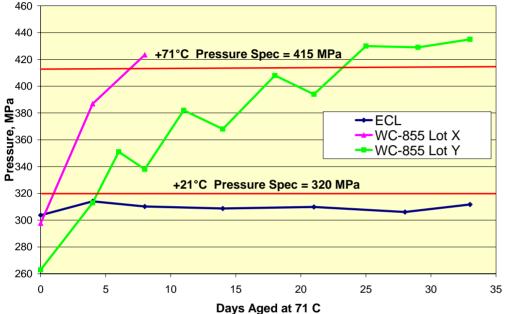
Current LW-30 Ammunition Family

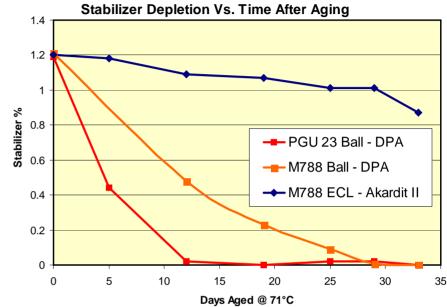
- M789 HEDP tactical round and the M788 TP practice round
- Fired from the M230 Gun System on the AH-64 Apache
- Propulsion: PA520 primer + 3 pellet flash tube + WC 855 BALL POWDER®
- Due to In-bore detonations and hang fires resulting in weapon system failures in the field, an investigation team was established to identify root cause.

Investigation identified propulsion system weaknesses as one root cause for hang fire signature

- Propellant current propellant found to be chemically and ballistically unstable after exposure to hot conditions
- Ignition System nitrocellulose lacquer seal failure

3


CATKS


RHEINMETALL

a h

ECL[®] Propellant Superior Stability Response

Ballistic Stability Comparison in LW30 M788

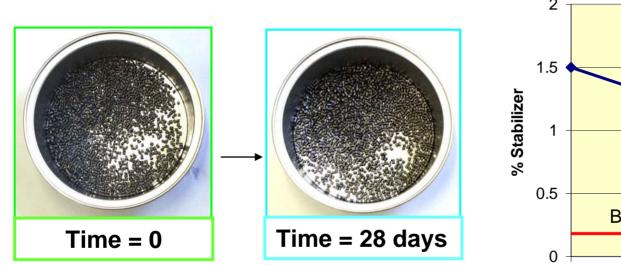
CATK)

RHEINMETALL

a h

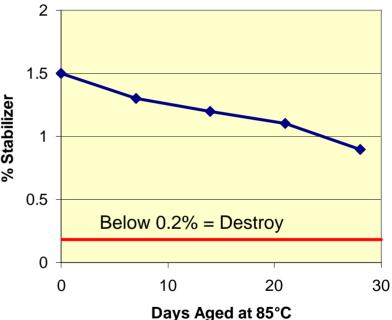
- Large variation in ballistic stability response for WC-855 after hot temp storage
- Propellant lot 'X' reaches upper spec limit for pressure after 7 days at 71°C
- Ball propellant analyzed 0% stabilizer after 18 days at 71°C
- ECL propellant analyzed 1.1% stabilizer after 18 days at 71°C

Safety Concern for User!

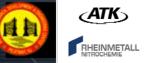

No change in ballistic performance of ECL after 33 days at 71°C!

After 33 days, ECL analyzed with 83% primary stabilizer

Excellent Chemical Stability

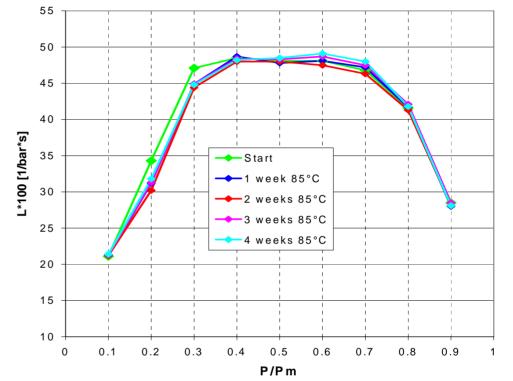


In anticipation of more stringent aging requirements, ECL propellant was subjected to 85°C for 28 days



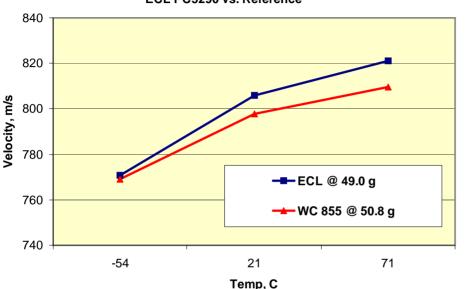
- No physical change in appearance
- No gluing or tackiness of grains
- No RDX migration to surface

ECL Stabilizer Depletion



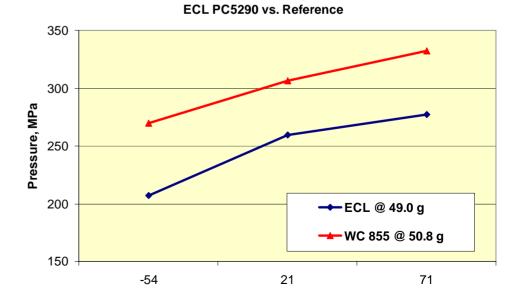
• After 28 days storage at 85°C , 58% primary stabilizer analyzed in ECL propellant

Excellent Ballistic Stability


- Dynamic vivacity is a parameter of interest derived from closed bomb firing data
- Vivacity is an expression of propellant chemical composition (burn rate) and the surface area

No Degredation in Ballistic Performance in ECL Propellant After 28 Days at 85°C

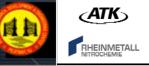
Superior Ballistic Performance of ECL®



LW30 Velocity Comparison ECL PC5290 vs. Reference

ECL Exceeds Ballistic Performance of WC 855:

- ✓ Lower Charge Weight
- ✓ Higher Velocity
- Reduced Pressure


Temp, C

LW30 Pressure Comparison

Extra Efficiency of ECL Translates to:

- ✓ Extended Range
- Increased Lethality
- ✓ Cost Savings
- ✓ Ballistic Margin

7

Thermo-Mechanical Approach to Calculating Gun Barrel Erosion by Stein RWM

Erosion ~
$$(m_c)^{1.5} \cdot (T_{ex})^7 \cdot (v_0)^{1.4} \cdot (p_{max})^5$$

 $m_c = Charge Mass, T_{ex} = Flame Temperature, v_0 = Muzzle Velocity, P_{max} = Peak Pressure$

21°C	ECL	Ball	71°C	ECL	Ball
Charge weight, g	49.0	50.8	Charge weight, g	49.0	50.8
Flame temp, K	2880	2750	Flame temp, K	2880	2750
Pmax, Mpa	259.4	306.4	Pmax, Mpa	277.4	332.4
Erosion	6.62 E+38	1.16 E+39	Erosion	9.26 E+38	1.75 E+39
Relative Erosion, %	57	100	Relative Erosion, %	53	100

- Relative erosivity of ECL ~ 55% of WC 855 Ball
- Peak gas pressure is the main driver for barrel erosion

CATK

RHEINMETALL

44

Action time critical to the LW30 M230 gun system

- Rate of fire is 625 rounds per minute

Propellant	Description	AT, ms
Reference	Std Ignition	2.70
LW30 ECL FM4285	Std Ignition	2.49
LW30 ECL FM4285	Standard primer, no flash tube	3.74
WC 855 L574	Standard primer, no flash tube	75.25
LW30 ECL FM4285	MIC primer, with flash tube	3.26
WC 855 L574	MIC primer, with flash tube	3.43
LW30 ECL FM4285	MIC primer, no flash tube	4.03
WC 855 L574	MIC primer, no flash tube	85.61

Conducted work share investigation with PM MAS to investigate alternate primer mix effects

- MIC primers are aluminum based primers
- Potential next generation lead-free "green" primer

Alternate ignition testing illustrates superior ignitability of ECL propellant

•Nitrochemie ECL propellant offers superior ballistic performance in the LW-30 Ammunition Family

•ECL propellants are extremely stable: both ballistically and chemically even after hot temperature storage

- Excellently suited for extreme climate missions
- •ECL propellants are "GREEN" formulations, they do not contain toxic ingredients or mobile plasticizers
- •ECL propellants exhibit improved IM characteristics
- •ECL propellant formulation shows improved erosivity compared to currently fielded ammunition service life of barrels will increase

•Superior ignition properties demonstrated with ECL propellant

Acknowledgements and Questions

Co-workers at ARDEC and PM MAS, Picatinny Arsenal

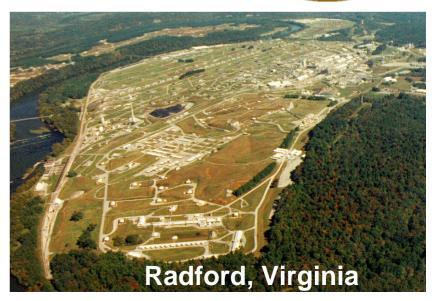
 Bishara Elmasri, Chester Topolski, Rao Yalamanchili, John Hirlinger, Anthony Cortese

Co-workers at Nitrochemie Wimmis AG

Beat Vogelsanger, Tiberio Rocci

Co-workers at ATK

• Steve Ritchie, David Darden, Larry Douma



a h

CATKS

RHEINMETALL

