IM Explosive for SMAW
HEAA Warhead

Indian Head Division, Naval Surface Warfare Center
Indian Head, MD

April 8, 2009
NDIA Gun and Missile Systems Conference

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.
Presentation Outline

• Objectives
• Approach
• System Description
• Explosive Selection
• Qualification and Performance Tests
• Summary
• Acknowledgements
Objectives

• Replace SMAW HEAA warhead fill (Octol) with explosive of comparable performance and improved IM characteristics
 – Sponsor directive: only system change will be explosive fill

• Meet current HEAA penetration requirements

• Qualify SMAW HEAA with IM warhead fill (SMAW HEAA-IM Warhead)
Approach

- **Phase I: Explosive Selection**
 - Explosive Selection Committee
 - IM and Performance Testing in SMAW HEAA Warhead
 - Downselection to Final Explosive Fill

- **Phase II: Qualification and Performance Testing SMAW HEAA-IM Warhead**
SMAW HEAA System Description

- Shoulder-launched Multi-purpose Assault Weapon High Explosive Anti-Armor
- DODIC HX06
- Effective against medium armor
- SMAW HEAA consists of:
 - MK 153 MOD 0 Launcher
 - SMAW HEAA Encased Assault Rocket (EAR)
- SMAW HEAA Rocket consists of:
 - Rocket motor
 - Impact fuze
 - Shaped charge, high explosive warhead
Selection of IM Explosive Candidates
Explosives Assessment

- Explosive Output
- IM Survivability
- Safety & Reliability
- Producibility / Life Cycle Costs
Explosive Candidates

- PBXN-9
 - Used in Navy & Army shaped charge ordnance
 - Good IM in FCO/SCO/BI
 - Bad IM in FI

- PBXN-11
 - Better performance than PBXN-9
 - Good IM in FCO/SCO
 - Bad IM in BI/FI

- PBXW-114
 - Equivalent performance to PBXN-110
 - Good IM in FCO/SCO/BI
 - Potential for significant improvement in FI
Explosive Properties

<table>
<thead>
<tr>
<th>Explosive</th>
<th>Composition</th>
<th>Manufacture Method</th>
<th>Density, g/cc</th>
<th>FCO/SCO/BI</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBXN-9</td>
<td>HMX/binder</td>
<td>pressed</td>
<td>1.73</td>
<td>V/V/V</td>
</tr>
<tr>
<td>PBXN-11</td>
<td>HMX/binder</td>
<td>pressed</td>
<td>1.80</td>
<td>V/V/IV</td>
</tr>
<tr>
<td>PBXW-114</td>
<td>HMX/Al/binder</td>
<td>cast</td>
<td>1.71</td>
<td>V/V/V</td>
</tr>
<tr>
<td>Octol</td>
<td>HMX/TNT</td>
<td>melt (sedimentation) cast</td>
<td>1.82</td>
<td>I/I/V</td>
</tr>
</tbody>
</table>
Phase I. IM and Performance Tests
Phase I Testing

• Slow Cook-Off
 – 2 warheads of each explosive fill plus Octol baseline
 – Tests performed at Dahlgren Division, NSWC

• Fragmentation Impact
 – 2 warheads of each explosive fill plus Octol baseline
 – Tests performed at Dahlgren Division, NSWC

• Penetration
 – 3 warheads of each explosive fill (2 for PBXN-11) plus Octol baseline
 – Tests performed at Dahlgren Division, NSWC

• Flash X-ray
 – 2 warheads of PBXN-9 and PBXW-114 fills plus Octol baseline
 – No PBXN-11 loaded warheads available
 – Tests performed at ARL, Aberdeen, MD
Slow Cook-Off Test

- MIL-STD-2105C (STANAG 4382)
- 2 tests per explosive candidate and Octol baseline
- Live warhead, other components were inert mass simulates
- Six thermocouples recorded temperatures
- Tests were continuously monitored by two video cameras
- Photographs of test set-up and post test results taken
Slow Cook–Off Results

<table>
<thead>
<tr>
<th>Explosive</th>
<th>Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBXN-9</td>
<td>Type IV (Deflagration)</td>
</tr>
<tr>
<td>PBXN-11</td>
<td>Type V (Burn)</td>
</tr>
<tr>
<td>PBXW-114</td>
<td>Type IV (Deflagration)</td>
</tr>
<tr>
<td>Octol</td>
<td>Type I (Detonation)</td>
</tr>
</tbody>
</table>

PBXN-11 post test
Octol post test
Liner Ejected from Warhead in all SCO tests of Explosive Candidates
Fragment Impact Test

- MIL-STD-2105C (STANAG 4496)
- 2 tests per explosive candidate and Octol baseline
 - Fragment velocity ~8000 ft/sec first test; ~6000 ft/sec second test
- Live warhead, other components were inert mass simulates
- Pressure gauges @ 15’, 22’ and 34’
- 3 Foil velocity screens measured fragment velocity
- Test recorded using digital Phantom cameras
Fragment Impact Results

<table>
<thead>
<tr>
<th>Explosive</th>
<th>Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBXN-9</td>
<td>Type I (Detonation)</td>
</tr>
<tr>
<td>PBXN-11</td>
<td>Type I (Detonation)</td>
</tr>
<tr>
<td>PBXW-114</td>
<td>Type I (Detonation) & Type IV (Deflagration)</td>
</tr>
<tr>
<td>Octol</td>
<td>Type I (Detonation)</td>
</tr>
</tbody>
</table>
Warhead Penetration Tests

- 3 Tests per explosive candidate and Octol baseline
 - Except only 2 PBXN-11 warheads available
- Test continuously monitored by a video cameras
- Photographs of test set-up and post test results taken

<table>
<thead>
<tr>
<th>Explosive</th>
<th>Average Penetration</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBXN-9</td>
<td>passed</td>
</tr>
<tr>
<td>PBXN-11</td>
<td>passed</td>
</tr>
<tr>
<td>PBXW-114</td>
<td>failed</td>
</tr>
<tr>
<td>Octol</td>
<td>baseline</td>
</tr>
</tbody>
</table>
PBXN-11 Loading

• Problems encountered loading PBXN-11 charges

• PBXN-11 tended to adhere to case wall when pressed under conditions used for PBXN-9 charges and caused case deformation

• PBXN-11 charges for tests were pressed as free-standing billets, slipped into warhead case, and then pressed lightly

• Loading process improvement required if PBXN-11 selected
Summary of Phase I Results

<table>
<thead>
<tr>
<th>Explosive</th>
<th>Density</th>
<th>Current Processibility</th>
<th>Penetration</th>
<th>SCO</th>
<th>IM Reactions</th>
<th>Frag Impact (T1 8000 ft/sec, T2 6000 ft/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBXN-9</td>
<td>1.744</td>
<td>Yes</td>
<td>passed</td>
<td>IV (2) Deflagration</td>
<td>I (2) Detonation</td>
<td></td>
</tr>
<tr>
<td>PBXN-11</td>
<td>1.769 *</td>
<td>No</td>
<td>passed</td>
<td>V (2) Burn</td>
<td>I (2) Detonation</td>
<td></td>
</tr>
<tr>
<td>PBXW-114</td>
<td>~1.71</td>
<td>Yes</td>
<td>failed</td>
<td>IV (2) Deflagration</td>
<td>I (1) Detonation</td>
<td></td>
</tr>
<tr>
<td>Octol</td>
<td>1.80-1.85</td>
<td>N/A</td>
<td>baseline</td>
<td>I (2) Detonation</td>
<td>I (2) Detonation</td>
<td></td>
</tr>
</tbody>
</table>

* 98% TMD is 1.793 gm/cc. 1.769 is 96.7% TMD
IM Explosive Selection

• PBXN-9 Selected
• Based on
 – Performed well in penetration tests
 – IM characteristics
 – Fielded as main charge in other shaped charge warheads
 – Drop in solution
• Place barrier tape between PBXN-5 booster and PBXN-9 explosive
• Informally refer to SMAW HEAA system with PBXN-9 warhead fill as “SMAW HEAA-IM Warhead”
Phase II. Qualification and Performance Tests for SMAW HEAA-IM Warhead
Qualification and Performance Tests

• Objectives

 – Ensure that SMAW HEAA-IM Warhead meets IM and Hazard Classification (HC) requirements

 – Obtain Final (Type) Qualification of the SMAW HEAA-IM Warhead

 – Verify that replacement of warhead fill has not caused degradation of system performance
Phase II Tests

• Test Items
 - Built by Nammo Talley, Inc.
 - Warheads loaded by IHDIV, NSWC
 - Liners are Government Furnished Material (GFM)
 - Mk 259 Fuzes are GFM

• Testing will be conducted by National Technical Systems (NTS), Camden, Arkansas during March – June 2009
Qualification Tests

Tests harmonized for IM and HC Purposes, but include only a limited subset of HC and FTQ tests, since this effort is only changing the warhead explosive fill and not safety features of the system.

- Basic Safety Tests w/ Thermal Stability
- Sympathetic Detonation (Stack Test)
- Fast Cook-Off
- Slow Cook-Off
- Bullet Impact
- Fragment Impact
Phase II Test Matrix

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Live WH w/ Booster</th>
<th>Rocket Motor Live</th>
<th>Rocket Motor Inert</th>
<th>Fuze Live</th>
<th>Fuze Inert</th>
<th>Spotting Round Live</th>
<th>Spotting Round None</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-day T&H, Thermal Stability, Vibration, 4-day T&H, 40 ft. drop</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>28-day T&H, Thermal Stability, Vibration, 4-day T&H, Flight Performance Testing</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Flight Performance Testing (Baseline)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sympathetic Detonation - Confined Stack Test</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sympathetic Detonation - Unconfined Stack Test</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Fast Cook Off</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Slow Cook-Off</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Bullet Impact</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Fragment Impact</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Phase II Test Matrix (continued)

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Live WH w/ Booster</th>
<th>Rocket Motor</th>
<th>Fuze</th>
<th>Spotting Round</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Live</td>
<td>Inert</td>
<td>Live</td>
</tr>
<tr>
<td>3 Month Aging, Penetration Testing</td>
<td>WH only</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WH only</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WH only</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Month Aging, Penetration Testing</td>
<td>WH only</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WH only</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WH only</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vibration, Penetration Testing</td>
<td>WH only</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WH only</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline Penetration Testing</td>
<td>WH only</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WH only</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary

- PBXN-9 selected as IM explosive for SMAW HEAA warhead
- Qualification test plan received concurrence from WSESRB, NOSSA, DDESB, and Navy, Army & Air Force Hazard Classification Offices
- Warheads have been loaded
- Test items have been built
- Qualification and performance testing is underway
Acknowledgments

• Sponsor: Marine Corps Systems Command Program Manager for Ammunition (PM Ammo)
 – Program Manager: Richard Dooley
 – Engineer: Richard Hardy
 – Technical Advisor: Tim Portner, Dahlgren Division, NSWC

• Test item build: Nammo Talley, Inc.
 – Project Manager: Will Betush
 – Project Engineer: Glade Hansen
• Contact information:
 – Nancy Johnson
 – Indian Head Division, Naval Surface Warfare Center
 – Phone: 301-744-2575
 – Email: nancy.c.johnson1@navy.mil