Flight Controlled Mortar (FCMortar) for Precision Urban Mortar Attack (PUMA)

NDIA Fuze Conference
19-21 May 2009
Flight Controlled Mortar
FCMortar

• What is FCMortar?
 – Guidance Kit for 81mm HE ammunition
 • Adds precision capability to M821A1/A2 & M889A1/A2 Family of Ammunition
 • Upgrade performed at Depot level
 • Core weapon system for Precision Urban Mortar Attack (PUMA)

• Why FCMortar?
 – 81mm mortar systems currently area fire weapons
 • Can’t provide fire support in confined areas/difficult access terrain
 • No precision capability
 – Brings light-weight precision capability to the company/platoon level
 • Utilized within USMC Enhanced Company Operations (ECO) framework
 • Timely, Organic Fire Support

Does not replace existing 81mm Mortar Inventory
Flight Controlled Mortar
“Difficult Terrain”

Engagements in New Terrain Types Hampered by Topology
Flight Controlled Mortar
Projected Capabilities

• Precision Delivery
 – GPS & SAL
 • SAASM + Anti-Jam GPS
 • Micro-Pulse Laser Designation (MPLD) Seeker
 – Access to new/difficult terrain types
 • Urban (MOUT), Canyons, Mountains, Reverse Slope
 • Accomplished through advanced trajectory shaping techniques

• Built on existing mortar capabilities
 – Retains fuzing functions & propulsion system
 – Comparable engagement ranges

• Cost Driven solution
 – $3,200 - $5,000 AUPC
Flight Controlled Mortar
Current Design Overview

- Existing Primer & Propellant Increments
 Leveraged directly from M821/M889

- Existing Warhead Body
 Unmodified M821/M889

- Canard Actuator
 Inside GNC/Fuze Assembly

- Articulating Canards
 Deployed at Start of Guided Flight

- Stabilizing Tail Fins

- GPS Receiver
 Mayflower C/A
 GPS Receiver for Phase I

- Terminal Seeker
 MPLD
DoD Development Team

• Sponsor
 – Office of Naval Research, Code 30 Fires

• Principal Investigator
 – Naval Surface Warfare Center Dahlgren Division
 • Code G33 – Precision & Advanced Systems Branch

• Guidance Kit Development, Integration, & Testing
 – Army Research Laboratory, Aberdeen Proving Ground
 • Advanced Munitions Concepts Branch

• Fuzing
 – Armament Research, Development and Engineering Center (ARDEC)
 • Fuze Division, Adelphi

• Terminal Seeker Development
 – Micro-Pulse Laser Designation
 • Naval Surface Warfare Center Dahlgren Division
 – Code G31– Expeditionary Weapon Systems Branch
 » Targeting Engagement Systems Center of Excellence (TESCE)
Flight Controlled Mortar Program Schedule

• Phase I (FY09-11)
 – Development of system architecture
 • Sub-system development & demonstration
 – Terminal seeker technology maturation
 – GPS only guided flight & trajectory shaping demonstrations

• Phase II (FY12-14)
 – Terminal Seeker Integration
 – Guided flight & trajectory shaping demonstrations w/ Terminal Seeker
 – PUMA Demonstrations
 • End-to-end demonstration including ground & UAS designation systems
 • Intended to be as realistic as feasible
 – Transition to Acquisition
• First Demonstration Event
 – ARDEC Sub-Sonic Wind Tunnel, Picatinny Arsenal
 • 9-12 February 2009
• Validated most aerodynamic predictions
 – Supports simulations showing vertical approach & range extension capabilities
 – Minor design change needed to enhance static margin
 • Tail-kit redesign completed
• Forward section of guidance kit replaces existing M734/935 mortar fuzes
 – Maintains existing fuzing capability
 • PD, PD Delay, HOB
 • Additional modes possible
 – Time, Point-in-Space, etc…
 – Utilizes existing production components where feasible
 – New components currently being investigated for applicability
 • HOB antenna, 2nd Arming environment sensors, MEMS fuzing components
• Supplements existing 81mm mortar inventory with precision capability

• Allows engagement of targets in previously inaccessible terrain

• Reduces cost & creates a more mobile alternative to existing precision fire support systems

• Supports Enhanced Company Operations (ECO) Framework as part of PUMA system of systems approach