Pyro-MEMS
Technological breakthrough in fuze domain

Fuze Conference 2009

Renaud Lafont
Lake Buena Vista, FL

20th of May 2009

Approved for public release
Content

1. NEXTER Munitions Fuze activities
2. Design & Demonstration of MEMS SAU
3. Design & Demonstration of 25mm Airburst ammunition Mk I
4. Design & Demonstration of 25mm Airburst ammunition Mk II

Authorized for public release
1. **NEXTER Munitions Fuze activities**
NMu: Fuzing System manufacturer

Products: Fuzing system & SAU for missile, tank ammunition (120, 100, 90 mm caliber), naval artillery (100mm caliber) and medium caliber (40, 30 and 25 mm caliber).

Strengths:

- Pyrotechnical components manufacturer (primary & secondary)
- Own proving ground
- The complete munition designer
NMu: Fuzing System designer

Applications:
- Airbursting ammunition
- Opto-Pyro
- LEEFI
- ...

Strengths:
- Modelisation
- Data recorder
- Own proving ground (static, pyrotechnics, dynamic)
- Same group than weapon system designer (NEXTER Systems)
1) **Design & Demonstration of MEMS SAU**

Contract 03.04.078 – Demonstration of miniaturized SAU
1) MEMS SAU

Technology MEMS

Pyrotechnical interruption

Miniaturized Electronic driver

STANAG 4187 compliance
Micropyrotechnics, Synergy of mechanics, electronics & pyrotechnics

The Step Forward

03/2007 – delivery of 10 µ-SAUs

Requirement

- Pyrotechnical safety managed by electronically controlled MEMS
- Volume less than 2 cm³
- In accordance with STANAG 4187 (last edition)
- Ignition of EIDS
- Low cost
- Generic SAU
Arming ability and reversibility
MEMS design according to STANAG 4187 requirements

ARMED

SAFE

1st Safety lock

2nd Safety lock

Arming displacement
Environnemental conditions :

► 120mm ammunition Polynege (Laser guided tank ammunition) firing (~10 000 g)

View of the actuators after firing
1) **MEMS SAU**

Technology MEMS

Pyrotechnical interruption

Miniaturized Electronic driver

STANAG 4187 compliance
Reliability and safety performances obtained by hardened tests (GTPS)

- **Reliability**: 0.999 with 75% confidence level
- **Safety**: 0.9999995 with 90% confidence level

* Interruption test on PETN booster
Pyrotechnical tests

Transmission

Interruption

Detonator
SAU body
MEMS

TIME

FUZE CONFERENCE 2009 - Renaud LAFONT

Approved for public release
1) **MEMS SAU**

- Technology MEMS
- Pyrotechnical interruption
- **Miniaturized Electronic driver**
- STANAG 4187 compliance
High density PCB

- 8 layers
- High density of parts
- « In Pad » vias
- In board vias
- « Flex » PCB
Integration
Integration
1) MEMS SAU

Technology MEMS

Pyrotechnical interruption

Miniaturized Electronic driver

STANAG 4187 compliance
Compliance with STANAG 4187

- Two independant orders to authorize arming sequence [Exg 6.a).1] : OK
- Physical shutter between detonator and booster [Exg 8.a).1] : OK
- Explosive assessment and approval : COTS pyrotechnical devices OK [Exg 7.a]) : OK
- Non-armed guaranty during assembly and installation : [Exg 12.a]) : electrical information about shutter status is available
1. **Design & Demonstration of 25mm Airburst ammunition-Mk I**

 Contract n°05.50.208 – Improvements of medium calibre ammunition

 Demonstrator for a programmable air bursting 25 mm round
Aims of the study

► Airburst has to be initiated above the target with an accuracy of 1 m at 1000 m

► Airburst mode shall be compliant with the maximal range of the 25, 30 and 40 mm weapons

► Impact mode available

► Compliance with STANAG 4187

► Airburst Fuze Programming Unit shall be able to equip existing weapons systems (retrofit)
► Programming Unit
- Inductive coil (Mode + Chronometry)
- Impact mode remains available without programming unit

► Operational modes
- Airburst +PD +Self-destruct

► Airburst performances
- Chronometry: +/- 50 cm at 1000 m

► Environment conditions:
- Medium calibre 25x137: 100 000 g 1000rd/s
Electronics and SAU designs are deeply fit into each other during engineering process.
Recorded flight tests

- Accumulated energy is generated by setback acceleration
- Chronometric accuracy assessment
- Detonator firing sequence
EMC immunity assessment

Measures from 2 GHz to 18 GHz

<table>
<thead>
<tr>
<th>Spectral analyser</th>
<th>ampli</th>
</tr>
</thead>
<tbody>
<tr>
<td>receptor</td>
<td>emitter</td>
</tr>
</tbody>
</table>

Induced voltage within the round coil is deduced by analysis from measures achieved thanks to vectorized spectral analyser.
EMR hazards immunity

Measures from 60 MHz to 18 GHz

<table>
<thead>
<tr>
<th>Networks analyser</th>
<th>ampli</th>
<th>emission</th>
</tr>
</thead>
<tbody>
<tr>
<td>reception</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STEP 1: measure of max. level without ammunition

<table>
<thead>
<tr>
<th>shell</th>
<th>ampli</th>
<th>emission</th>
</tr>
</thead>
</table>

STEP 2: measure of max. level within ammunition

- Measures permits to assess the shell faradisation
- Analysis permits to evaluate the existing safety margins against EMR aggressions
Demonstration NEXTER Munitions
French MOD – September 08
Conclusion

- The maturity levels have grown quickly till today
- This growth is partially due to the new experimental techniques like in-flight data recorder at high level of acceleration
- 2009 – 2010 will be the time for the demonstrations tests!
1. Design & Demonstration of 25mm Airburst ammunition-Mk II

Self-funded study
Synthesis

• Merge both programs (airburst and μSAU)

• μSAU advantages
 ▶ MEMS technology particularly adapted to Medium caliber ammunition: size & number of ammunition to produce
 ▶ Cheaper: electronics industry
 ▶ More reliable
 ▶ Robust
 ▶ Settable for the complete range of medium caliber
Self funded-study

- μSAU design based on NMu pyro-MEMS experience
- Study of safety locks reacting straightly to the arming environments
- MEMS SAU designed for electrical or mechanical detonators
- Workflow
 - Simulation, static and dynamic tests on each device (setback & rotation safety lock, motion of the shutter)

 Down selection

 - Simulation, static and dynamic tests for the complete MEMS SAU
Time schedule

<table>
<thead>
<tr>
<th>Year</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAU MEMS DESIGN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety locks study</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEMS production and evaluation iterations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete SAU study</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEMS production and evaluation iterations</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TRL6

SAU MEMS DESIGN Complete SAU study

Approved for public release
Work in progress

- MEMS SAU design done (patented)
- First batch of MEMS produced
- First batch of MEMS tested
 - Structure able to withstand 100,000g
 - Safety locks operate
Thanks to your attention