Process-Performance Based Reliability (PPBR)

Standardization of Organizational Data Analysis via CMMI-Causal Analysis and Resolution (CAR)

November 17-19, 2009

William B. Winkel

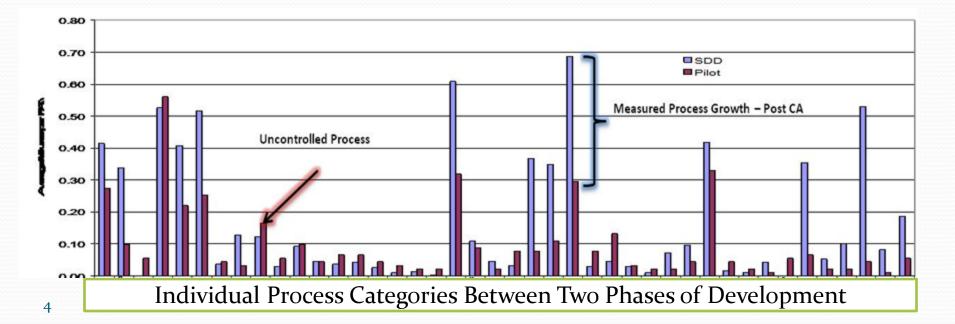
Agenda

- Why is a new process for reliability prediction needed
- How can a process be developed around CMMI-CAR
- What issues must the new process address relative to the organization's process health
- Summarize the process and provide one sample calculation

Industry Trends are Driving the Need for New Reliability Design and Analysis Methods

- Contractors must "build the case" for improving product reliability during product development cycle
 - Ernest Seglie, Christopher Dipetto, Office of the Secretary of Defense, "Report of the Reliability Improvement Working Group", September 4, 2008^[1]
 - Ministry of Defence Standard 00-42, Reliability and Maintainability (R&M) Assurance Guidance Part 3 R&M Case, Issue 2 Publication 6 June 2003^[2]
 - SAE JA1000-1, "Reliability Program Standard Implementation Guide", 1999-03-01^[3]
- Contractors will execute pay-for-performance contracts (PBL)
 •DODD 5000.1, Department of Defense Directive, "The Defense Acquisition System", May 12, 2003, paragraph E1.1.17 [4]

• Organizations must demonstrate continual process improvement via process performance models

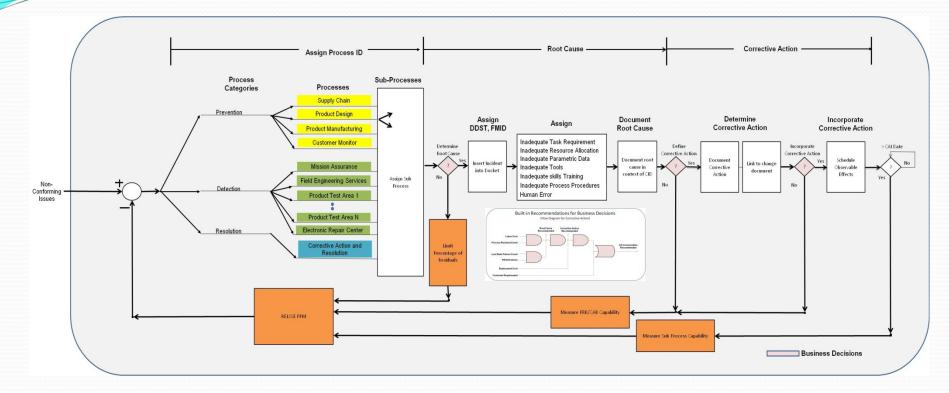

•CMMI[®] for Acquisition, Version 1.2, CMU/SEI-2007-TR-017, ESC-TR-2007-017, November 2007^[5] •CMMI[®] for Development, Version 1.2, CMU/SEI-2006-TR-008, ESC-TR-2006-008, August 2006^[6]

•Current Reliability prediction methods have deficiencies

Literature review has identified new direction for Reliability Engineering

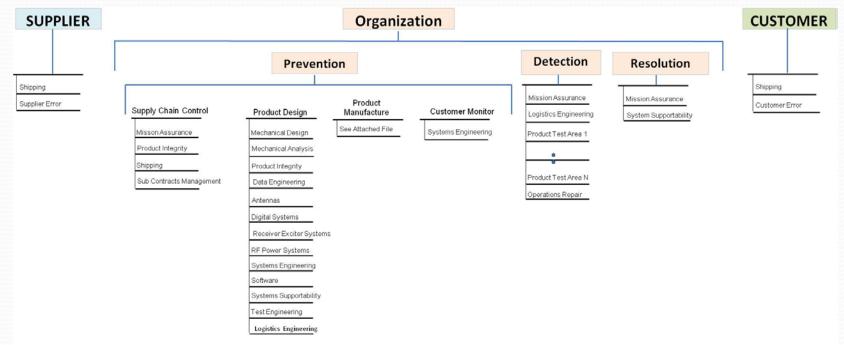
The PPBR Objective is to Manage Process Reliability Growth Between Phases of Production

- Left unmanaged, organizations have limited visibility of reliability and cost growth between phases of development
 - Normalized defect counts are unavailable for between-phase comparisons
 - Defects are not uniformly categorized between development activities
 - Corrective action effectiveness is unknown
 - Unincorporated corrective action varies randomly from last phase performance
- A standard process and single web-based tool provides synergy across multiple functional groups within an organization
 - Normalized defects are continuously monitored and measured within and between phases
 - Correlations are established between categories of development and field defects



Properly Defined Metrics Answer Five Critical Questions

- Is the probability of a field defect warrant the cost of determining and incorporating corrective action?
- Are defects falling through the cracks?
- Are the separate FRB's within the organization performing satisfactorily?
- Is the correction capability of each organizational sub-process maintaining control?
- Has reliability growth occurred?

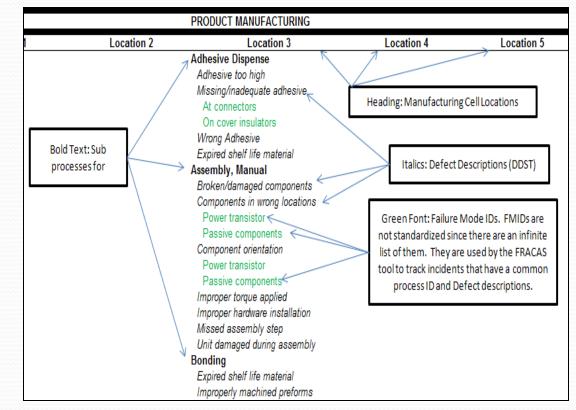

PPBR Introduces a CMMI-CAR Compliant Closed-Loop

Corrective Action System

- Reliability activities are integrated systematically across an organization
- Measurement performance of analyst, Failure Review Board, sub-process, and organizational management
- 4-step process: Product reliability is not simply measured it is managed (via business decisions) to ensure growth between phases of program development

Step 1 – Define the Process Structure and Assign the Process ID (PID)

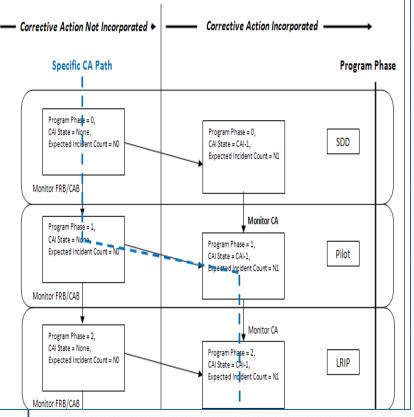
- Not all defects are within the span of control of the organization
- Organizational processes are categorized as related to prevention, detection, and resolution
- PID defines the sub-process that the defect has escaped from

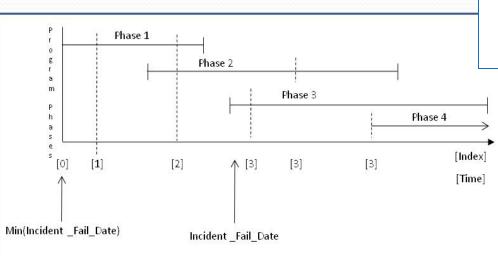

Steps 2 – Define the DDST/FMID and Identify the Root

Cause

- Make decision to determine root cause for current PID
 - Assign PID to a new or existing docket
- Complete the path associating process to physical defect
 - Defect Description (DDST) and Failure Mode ID (FMID) are docket level attributes

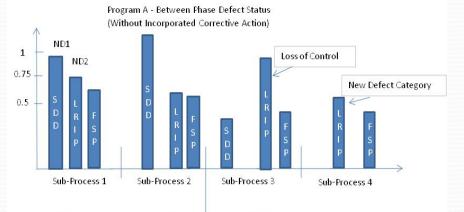
Examples:


- Failure Description: Solder joint is cracked on PLCC, MC68HC11F1FN.
- PID Structure1: Prevention/Product Design/Mechanical Analysis/PoF/Insufficient solder height
- PID Structure 2: Prevention/Product Manufacture/Assembly, Manual/Broken or damaged components


Process	Name:								
Identification	Location:	Mechanical Design			Mechanical Analysis			Product Ir	
Sub process Identification	Name:	Modules	Wired Chassis	System Installation	PoF	Vibration	Thermal	Components Engineering	Materials & Processes
Defect Description	Collect Customer Requirements Allocate Requirements Internally Allocate Requirements Externally								
(DDST)	Select Parts/Materials Perform Analysis Generate Schematic/Drawing								
	Generate Test Plans								

Step 3 – Assign Corrective Action Tracking Index

- Corrective action resides in one of two states "incorporated" or "not incorporated"
- Defects reside in one of two states "customer" or "non-customer" returns
- 4 key docket-level parameters provide state-control
 - Program Phase, Corrective action Index, Fail Date, and Customer return status


• State sequencing for noncustomer defects is completely automated

Step 4: The Output Metrics Answer the 5 Critical

Questions

- FRB Effectiveness example answers only one of 5 key questions
 - Affects only dockets that have not had corrective action incorporated
 - Is only meaningful when measured across sub-processes not within sub-processes
 - Alarms monitor rate of defect accumulation
 - Provides three measurements of improvement

Desired FRB performance between phases

Undesired FRB performance between phases

Parameter Definitions:

- ND1 Normalized defect ratio for sub-process 1 during the baseline phase
- ND2 Normalized defect ratio for sub-process 1 during the phase subsequent to the baseline
- N1 Total number of defects associated with sub-process 1 collected at the end of the baseline phase
- N2 Total number of defects associated with sub-process 1 collected at the end of the subsequent phase
- T1 total number of assemblies at risk (assembled) during the baseline phase
- T2 total number of assemblies at risk (assembled) during the subsequent phase
- N The actual number of defects currently collected in a docket for the current phase
- T The actual number of assemblies currently at risk, i.e., defined as OK for stores
- Cpk-FRB The average correction capability of FRBs within the organization

Sub-process alarm Indicates that the rate of defects collecting in the docket will cause the last phase limit to be exceeded

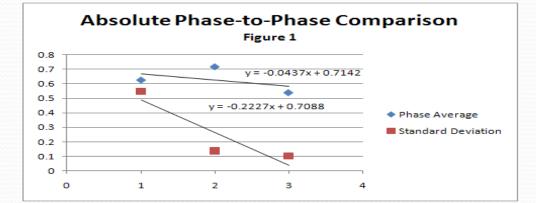
Parameter Calculations:

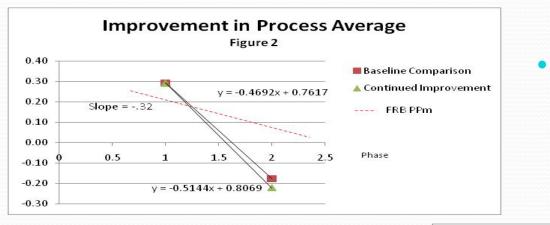
ND1 = N1/T1 For the baseline phase

NDi = Ni/Ti In general

Sub-process alarm = N > (N1/T1)*T*C_{pk+FRB} Are defects accumlating at a rate higher than expected?

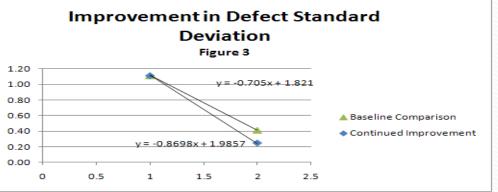
The alarm is ALWAYs referenced to phase 1, i.e, (N1/T1)


In


					Baseline Comparison		Continued Improvement		
	PID/DDST	SDD	LRIP	FSP	SDD/LRIP	SDD/FSP	SDD/LRIP	LRIP/FSP	
	1	0.95	0.75	0.65	-0.21	-0.32	-0.21	-0.13	
	2	1.2	0.62	0.6	-0.48	-0.50	-0.48	-0.03	
	3	0.35	0.9	0.45	1.57	0.29	1.57	-0.50	
	4	0	0.6	0.45				-0.25	
Phase to	Average	0.625	0.7175	0.5375					
Phase	Std Deviation	0.548483	0.138654	0.103078					
Baseline	Average				0.29	-0.18			
Comparison	Std Deviation				1.12	0.41			
Continued	Average						0.29	-0.22	
mprovement	Std Deviation						1.12	0.25	

Results can Demonstrate the Effectiveness of FRB and Provide a

CMMI-PPM


- Metrics show negative slopes for decreasing defect count
- Single phase comparisons measure absolute performance

CMMI Process performance model measures consistent performance

• Standard deviations provide evidence of decreased dispersion between phases

Summary

- New industry requirements require a fresh look at reliability prediction
- CMMI-CAR integrates the physical and process aspects of failure
- 5 critical questions define the algorithm for corrective action control and measurement
- CMMI-PPMs are developed around the measured results

Questions?

References

- [1] Ernest Seglie, Christopher Dipetto, Office of the Secretary of Defense, "Report of the Reliability Improvement Working Group", September 4, 2008
- [2] Ministry of Defence Standard 00-42, Reliability and Maintainability (R&M) Assurance Guidance Part 3 R&M Case, Issue 2 Publication 6 June 2003
- [3] SAE JA1000-1, "Reliability Program Standard Implementation Guide", 1999-03-01
- [4] DODD 5000.1, Department of Defense Directive, "The Defense Acquisition System", May 12, 2003, paragraph E1.1.17
- [5] CMMI® for Acquisition, Version 1.2, CMU/SEI-2007-TR-017, ESC-TR-2007-017, November 2007
- [6] CMMI[®] for Development, Version 1.2, CMU/SEI-2006-TR-008, ESC-TR-2006-008, August 2006