

Agenda

- Introduction
- Background
 - QPM
 - Discrete Event Simulation
- Case study
 - Using discrete event simulation for QPM

Introduction – Who we are

- Optimal Solutions & Technologies (OST, Inc)
- Washington DC-based, founded in 1999
- Core competencies
 - Integrated IT solutions
 - Managed Services
 - Management consulting
 - Research, development & engineering
- CMMI L3 (CMMI-DEV v1.2)
- ISO 9001:2008 certified
- ANSI 748 compliant

Background

- QPM
 - Requires PPM's and PPB's
 - Most intimidating for us!

- Discrete Event Simulation
 - Step-by-step or Succession of events
 - Time Matters!
 - Events are not allowed in between time units
 - Non stochastic/deterministic

Our business problem

- Invoices were late resulting in
 - Customer complaints
 - Financial exposure
- Possible solutions
 - Add more staff (implies increases overhead cost)
 - Improve the process to make it LEAN

What we found useful: (1) A Jumpstart Method for Business Goals and Project Objectives Supporting CMMI High Maturity, Bob Stoddard, http://www.sei.cmu.edu/library/abstracts/webinars/21aug2008.cfm

What we want to cover today?

* Demonstration steps are captured in Appendix for your reference

What we did...

What we found useful: Process Model Tutorial http://www.processmodel. com/support/tutorials.html

What we found useful: (3) A Practical Approach for Building CMMI Process Performance Models

http://www.sei.cmu.edu/library/abstracts/presentations/28apr2009webinar.cfm

Data Collection

	In office - 7/27
Client	FAA-ESVMS (Jun)
Generated cover sheet	12,70-12,52
Run proj staffing & check outstanding ts report	P1/2/22-12/23 C 12/33-12/24
resolve ts issues	NA
Generate billing report	12:25-12:25
Resolve billing report issues	√/A
Initialize invoice	12:26-12:37
Populate labor	12128-12138
Generate expense report	10:08-10:09
resolve expense issues	N/A
Populate ODCs and enter G&A expense	NA
Print and check (inv check reports & contract only)	P:10:09-12:31 C/2:31-12:35
Generate additional reports	VA
PM approval (scan, send, & check for response)	5/12/38-12/39/4(12:42-12:43) S:10:43-12:44 -
Get Signed	
Redate, scan & upload, and copy 7/3	R:1:41-1:46 5:1:47-1:49 (nocapies)
Sent	2:22-2:27
Notify Linda '	2:27-2:29 dechangeontail &
Entered into contract tracking	2:29-2:34 (inclfnotifying of law fundang)
Marked off master chart	" 2/35-2/35
Add to quarterly reporting	N/A:
Notes	·

What we found useful: (2) Process Performance Baselines and Models: Duh, I Don't Get It, Diane Mizukami (Williams) http://www.dtic.mil/ndia/2007cmmi/Thursday/4amMizukami.pdf

Demo

Minitab

Graphical Summary

All screen shots are presented in the Appendix for your reference.

Recap

- Build as-is model
- Collect data
- Assess data quality and integrity
- Build PPB's
 - Minitab
 - ► Statfit

What we did...

Demo

Process Model

All screen shots are presented in the Appendix for your reference.

Recap

- Run the simulation
- Identify hot spots
- Run "What-If" scenarios
- Take Action

What we did...

Demo

Hypothesis tests

All screen shots are presented in the Appendix for your reference.

Recap

- Select the right test
- ◀ Interpret the results
- Update your model
- Evaluate results
- Repeat steps if needed

Confidence Intervals and Prediction Intervals

- Prediction Interval (PI)
 - Expected interval for next data point
- Confidence Interval (CI)
 - Expected interval for the central tendency (mean or median)

Beware!! Don't use CI's to make a prediction!!

Demo

- Determining Confidence Intervals
- Determining Prediction Intervals

All screen shots are presented in the Appendix for your reference.

Lessons Learned

- Start with a simple model
- Check the model with intuition
- Quantify savings in \$ if possible
- Keep your stakeholders engaged
 - Share positive and negative news

Step-by-step guide (From SEI presentations)

- 1. Identify or Reconfirm Business Goals
- 2. Identify the sub-processes/process
- 3. Identify Outcomes to Predict (y's)
- 4. Identify Controllable factors (x's) to predict outcomes
- ◆ 5. Include Uncontrollable x factors
- 6. Collect Data
- ▼ 7. Assess Data Quality and Integrity Not covered today.
- 8. Identify data types of all y outcomes and x factors
- 9. Create PPBs
- 10.Select the proper analytical technique and/or type of regression equation
- 11.Create Predictions with both Confidence and Prediction Intervals
- ◀ 12.Statistically manage sub-processes with PPMs
- ◀ 13.Take Action Based on PPM Predictions
- 14.Maintain PPMs including calibration and reconfirming relationships
- 15.Use PPMs to assist in CAR and OID

What's missing from QPM compliance?

- ◆ Goal 1
 - Objectives
 - Selecting sub processes
 - Taking action
- ◆ Goal 2
 - Applying analytical techniques
 - Monitoring performance
 - Actual records

Questions & Answers

Contact Information

Thank You!

Appendix- Tools and step-by-step guide

Tools Used

To create database Easy to access data

Access Data base

Used to Plot I-MR charts, Summary charts, Individual charts

Minitab

Stat fit , creating baseline , plotting Hot spots , Produce average .

Process Model

Produce Prediction Interval

Access Database

- □ Its easy to store and retrieve data as needed
- ■Multiple Phases can be stored
- ☐ Easy to access data using Queries

Outliers: Is an observation that is numerically distant from the rest of the data points

This can be done by Plotting I-MR Charts.

◄ I-MR Chart: Is a graphical tool that displays process variation over time. It signals when a process may be going out of control and shows where to look for sources of special cause variation.

I-MR Charts Using Minitab

Options in I-MR chart

Stat Fit using Process Model

Fit of Distribution

▲ Stat::Fit - [Document1: Automatic Fitting]					
File Edit Input Statistics Fit Utilities View Window	_ = ×				
	A BUTO::FIT EXPORT				
Auto::Fit of Distributions					
distribution	rank	acceptance			
LogLogistic(0., 1.29, 3.91)	94.7	do not reject			
Inverse Gaussian(0., 3.11, 10.)	66.8	do not reject			
Pearson 6(0., 9.25e-002, 25.1, 0.95)	65.1	do not reject			
Pearson 5(0., 0.936, 2.22)	62.3	do not reject			
Inverse Weibull(0., 0.984, 0.419)	59.	do not reject			
Lognormal(0., 1.49, 1.33)	58.8	do not reject			
Weibull(0., 0.712, 8.9)	36.3	do not reject\			
Beta(0., 1.58e+006, 0.627, 8.42e+004)	14.1	do not reject \			
Gamma(0., 0.735, 13.6)	12.1	do not reject \			
Power Function(0., 70., 0.362)	1.19	do not reject \			
Exponential(0., 10.)	1.08	reject \			
Erlang(0., 1., 13.6)	7.e-002	reject \			
Chi Squared(0., 5.38)	2.83e-003	reject \			
Triangular(-1., 75.7, -1.)	0.	reject \			
Uniform(0., 70.)	0.	reject \			
Rayleigh(0., 15.8)	0.	reject \			
Pareto	no fit	reject \			
Johnson SB	no fit	reject \			
Help, press F1					

Select do not reject variables to get time interval

Distribution Graph

Export data to text file

Time Interval

Update time interval in to particular Process

Phase-1 Summary

ENTITY SUMMARY (Times in Scoreboard time units)						
Entity Name	Qty Processed	Average Cycle Time (Minutes)	Average VA Time (Minutes)	Average Cost		
Invoice	63.66	19467.3	149.66	249.43	(Average)	
Invoice	3.82	1236	10.53	17.56	(Std. Dev.)	
Invoice	56	17259.7	126.04	210.07	(Min)	
Invoice	72	22512.6	174.34	290.57	(Max)	
Invoice	62.23	19005.8	145.72	242.88	(95% C.I. Low)	
Invoice	65.09	19928.8	153.59	255.99	(95% C.I. High)	
HardInvoice	16.33	20359.8	178, 11	296.86	(Average)	
HardInvoice	3.82	1441.94	12, 29	20.49	(Std. Dev.)	
HardInvoice	8	18085.7	152, 53	254.23	(Min)	
HardInvoice	24	23480.9	203, 04	338.41	(Max)	
HardInvoice	14.90	19821.4	173, 52	289.20	(95% C.I. Low)	
HardInvoice	17.76	20898.2	182, 70	304.51	(95% C.I. High)	

Average time for Phase-1

Phase-1 Hot Spots

Collecting Phase-2 data & Check Outliers

Repeat as in Phase 1

- Retrieving data from Access database
- Plotting charts such as

◆ These Charts are plotted to check for P-value for further analysis to check for Normality and Equal-Variance

- ◄ The P-value is the probability of obtaining a test statistic at least as extreme as the one that was actually observed, assuming that the null hypothesis is true.
- All tests are run at 95% confidence limit.
- 2 independent samples

As per SEI's Job Aid

Test to be performed

Appropriate Analysis: Types of Hypothesis Tests

Current sample data

Carnegie Mellon

Kevin Schaaff, Robert Stoddard Rusty Young, Dave Zubrow © 2009 Carnegie Mellon University

29

Normality Test – Summary chart Minitab Tool

Summary Graph

Summary Graph

Check for P Value

Variance Test – 2 Variance Test

Variance Test

Variance Test Graph

Non-Parametric Test for Median

Select particular data sample to be tested

Session Screen

Test for Equal Variances for CoverSheet, Coversheet_1

Mann-Whitney Test and CI: CoverSheet, Coversheet_1

N Median CoverSheet 27 2.000 Coversheet_1 24 2.000

Point estimate for ETA1-ETA2 is -0.000
95.1 Percent CI for ETA1-ETA2 is (-0.001,0.000)
W = 668.5
Test of ETA1 = ETA2 vs ETA1 not = ETA2 is significant at 0.5334
The test is significant at 0.4485 (adjusted for ties)

Check for p value

Stacking two Columns for Checking Non-Parametric Variance

Select columns to be stacked

column to be stacked

ComboCoversneet	SubComboCoversheet
2	CoverSheet Phase_2
2	CoverSheet Phase_2
*	CoverSheet Phase_2
2	CoverSheet Phase_2
*	CoverSheet Phase_2
5	CoverSheet Phase_2
2	CoverSheet Phase_2
1	CoverSheet Phase_2
2	CoverSheet Phase_2
2	CoverSheet Phase_2
2	CoverSheet Phase_2
7	CoverSheet Phase_2

Non-Parametric Test for Variance

Select particular data point for Variance test

Result For Equal Variance

Test for Individuals Graphs

Select data point for Individual Chart

Individual chart

74

