

Enjoying the Scenery on the Road to High Maturity

Susan T Bassham

November 2009

Agenda

- Background
- Goals
- Changes in Emphasis
- Software Engineering Process
 - Things we did well
 - PPQA Activities
- High Maturity Processes & Six Sigma
- DMAIC
- Variation in the data
- Ah Ha moments along the way
- Questions

Who are we?

- Small IT organization in a Federal agency
- Began applying Lean in 2005 and Six Sigma in 2007
- CMMI Assessments:
 - CMMI (Dev) ML 2 & CL 3 in 9 PAs- May 2007
 - CMMI (Dev) ML 3 May 2008

Goals

- Working toward CMMI Levels 4 and 5
- Utilizing Lean Six Sigma Tools
- Incorporating Lean and Agile, ITIL Services Model

A Change in Emphasis

From:

- Employees are the problem
- Doing my job
- Understanding my job
- Measuring individuals
- Change the person
- Correct errors
- Who made the error?

<u>To</u>:

- The Process is the problem
- Helping to get things done
- Knowing how my job fits in the process
- Measuring performance
- Change the process
- Reduce variation
- What allowed the error to occur?

Software Engineering Process (SEP)

Things we did well

- Clearly defined business goals
- Tied metrics to those goals
- Established standard processes
- Business Goal Example: Productivity
 - Measure lead time
 - Goal to deliver small iterations in 105 days
- Implemented Software Process Improvement Program (SPIP)
 - Empowered workforce to recommend changes to process and tools

PPQA Activities

- Quality Assurance/Tester part of the Product Team
- Real time audits and the end of each Loop
- Quality Assurance Closeout Review (QACR) documenting non-compliances and opportunities to improve

Fewer Process Compliance Defects... This is good, right?

High Maturity & Six Sigma

- Expect you to look deeper into the data
- Metrics become even more important
- Are processes consistent?
- Are operators consistent?
- Are there stable trends (predictable)?
- What is the variability?
- Identify sub-processes that should be statistically managed
- Identify improvement opportunities

QPM

Lean Six Sigma

OPF

FY08 Lead Time

FY09 Lead Time

More Data

Analyze

Variable Reg LT FY08 Plan LT FY08 Dev LT FY08 Test LT FY 08 Mean StDev N 35.10 32 41.34 26.38 24.65 32 78.31 66.84 32 35.91 28.51 32

Larger jobs but Loop 3 stayed close to spec even though job size and LT increased.

CIO/GG

Variation Among Teams

Histogram of T04 Req LT FY08-, Plan LT FY08, Dev LT FY08-, Test LT FY 0

Histogram of T05 Req LT FY08-, Plan LT FY08, Dev LT FY08-, Test LT FY 0

Histogram of T06 Req LT FY08-, Plan LT FY08, Dev LT FY08-, Test LT FY 0 Normal

Now What?

- Root Cause Analysis Fishbone
- Identified need for Requirements Standards and consistency across Team Leaders (TL)
- Suggestion made to review data by TL for standardization opportunities

Reality

- Mean is out of control!
- Need to reduce the variation in the Requirements Development sub-process
- Requirements Complexities are inconsistent

Next Steps

- Conducted Rapid Improvement Event
 - Defined new requirements standard
 - Defined new criteria for requirements complexity
 - Established Technical Specification for improved design
- Pilot Changes

Ah Ha! Results

- Identified key sub processes to control
- Identified root causes which became improvement opportunities
- Created new requirements standards
- Improved process for identifying complexities
- Piloting changes
 - Teams predict faster cycle time
 - Improved testing
 - Better quality software

mplexities CAR sG1 - Determine Causes of Defects sG2 - Analyze Causes

OPP

SG1 - Establish

Baselines & Models

SG1 – Quantitatively Manage

Summary

- CMMI and Six Sigma work well together
- We are using the model and methodology for the right reasons
 - Tied to business goals
 - Continuous Process Improvement
- Higher Maturity is worth the effort
 - Improved data based decision making
 - Reduced variation
 - Improved quality

Questions?