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Outline

• The quest for high maturity
– Why we use transformations

• Expert advice
• Observations & recommendations
• Case studies

– Software code inspections
– Drawing errors

• Counterexample
– Software test failures

• Summary
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The Quest for High Maturity
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ASU Log Cost Model
Using Lognormal Probability Density Function
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Summary for ln(COST/LOC)

ASU Eng Checks & Elec Mtngs

ASU Peer Reviews

• You want to be Level 5
• Your CMMI appraiser tells you to manage your code inspections with 

statistical process control
• You find out you need control charts
• You check some textbooks. They say that “in-control” looks like this

• You collect some peer review data
• You plot your data . . .

A typical situation (like ours, 5 years ago)
Approved for Public Release, Distribution Unlimited: Northrop Grumman Case 09-2031 Dated 10/22/09
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The Reality

• Highly asymmetrical
• Flunks Anderson-

Darling test for 
normality (p < 0.005)
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ASU Eng Chks & Elec Mtngs

ASU Cost Model

The control chart
• Penalizes due diligence in reviews

– Up to 11% false alarm rate (Chebyshev’s inequality)
• Doesn’t flag superficial reviews

– No lower control limit
• Skews the central tendency

– Average cost looks like it busts the budget

The data

What do you do?
Approved for Public Release, Distribution Unlimited: Northrop Grumman Case 09-2031 Dated 10/22/09
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An Idea

• Someone suggests that a data transformation might help
• You decide to hit the textbooks. Two of the best are

– Donald Wheeler, Understanding Variation: The Key to Managing 
Chaos, 2nd edition, SPC Press, 2000

– Douglas Montgomery, Design and Analysis of Experiments, 6th

edition, Wiley, 2005
• We’ll see what they have to say in a minute, but first let’s 

look at some factoids about data transformations . . .

Approved for Public Release, Distribution Unlimited:
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Data Transformation Factoids

• A data transformation is a mathematical function that converts your 
data into something else
– For example, converting temperature from Fahrenheit to Celsius

• When data do not meet the necessary characteristics to apply a 
desired probability model, the right data transformation can help

• Data transformations are encountered in many statistical applications
– Data analysis
– Experimental statistics
– Statistical process control (SPC)
– Pattern recognition

• At Aerospace Systems, 40% of our control charts use a data 
transformation
– We control about 50 different product development metrics

This presentation contains several slides intended to amplify the main discussion with technical 
detail meant to provide additional background information. We have labeled these “factoids.”
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Expert Advice
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Dueling Experts

• Unfortunately, they give conflicting advice

Wheeler favors the analysis 
of raw data

Montgomery advocates data 
transformations prior to analysis

Who can we believe?
Approved for Public Release, Distribution Unlimited: Northrop Grumman Case 09-2031 Dated 10/22/09
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Wheeler

• Doesn’t favor transforming data
• Reasons that you cannot always meet the assumptions for specialized 

models like the binomial or Poisson
• Favors empirical use of individuals/moving range charts for SPC or 

equivalent techniques for other applications because of their simplicity

– But this minimizes difficulties encountered with 
non-normal or non-symmetric data

– Practitioners must take care not to overvalue the 
utility of 2-sigma and 3-sigma confidence 
bands/control limits for non-normal data

Approved for Public Release, Distribution Unlimited:
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Calculus Factoids

• Tchebysheff’s Inequality
– For a random variable with finite variance (and no particular distribution), + k-

sigma limits will be exceeded 1/k2 * 100% of the time
• For k=2, a 2-sigma confidence limit can be violated up to 25% of the time 

– not 5%!
• For k=3, the 3-sigma control bands can be exceeded up to 11% of the time 

– not 0.3%!
– This can result in an unworkable rate of false positives

For an extreme case of “dirty” data, you could need + 18-sigma 
control limits to achieve to same degree of control as + 3-sigma 
limits with well-behaved, normally distributed data. 

But we never have dirty data, so why worry?
Approved for Public Release, Distribution Unlimited: Northrop Grumman Case 09-2031 Dated 10/22/09
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Montgomery

• Boldly recommends
– Logarithmic transformation yij = ln xij for lognormal data
– Square root transformation yij = (xij)0.5 or yij = (1 + xij)0.5 for Poisson data
– Arcsine transformation yij = arcsin xij for point-binomial data (that is, binomial data 

expressed in fractional form)
– Empirically-derived transformations for other cases (think Box-Cox)

• Focuses on stabilizing the variance

– Transformations work when there is some underlying physical 
causality
• How do you know?
• What happens when you have small samples and take one 

more data point?
– You may be sacrificing desirable decision-theoretic properties like 

unbiasedness, maximum likelihood, or uniformly most powerful

Approved for Public Release, Distribution Unlimited:
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12

Decision Theory Factoids

• Unbiased
– An unbiased estimator is, in the long run, accurate – that is, it has no non-

random component of error
• Maximum Likelihood

– A maximum likelihood estimator is the one most likely to be correct
• Uniformly Most Powerful

– A uniformly most powerful decision rule has the best chance of flagging any 
discrepant or out-of-control condition

Statisticians do not abandon these properties without good reason.
Approved for Public Release, Distribution Unlimited: Northrop Grumman Case 09-2031 Dated 10/22/09
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Observations & Recommendations

Listen to both experts
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Observations

• The Central Limit Theorem is a powerful ally
– Any distribution with a finite variance can be approximated with a normal distribution by 

taking a large enough sample size n
– Error of approximation varies as 1/n0.5

– In a practical sense, mild excursions from normality can be mitigated by observing more 
data

• A transformation can be worthwhile
– When a physical model explains why it should work
– When an empirical model is well-founded in a large amount of data

• Many studies of similar phenomena
• Large data sets

• Transformations can be difficult
– Mathematically messy
– Hard to interpret
– Hard to explain
– Cultural resistance to their use

Approved for Public Release, Distribution Unlimited:
Northrop Grumman Case 09-2031 Dated 10/22/09



15

Recommendations

• Due diligence requires that we investigate and compare using raw 
data vs. transformed data
– Modern tools limit us only by our imaginations

• Simpler is better unless there is harm
– Statistical decision theory embraces the double negative: we do not abandon 

the easiest approach until we compile compelling evidence that it doesn’t 
work

– Consider both the incidence rates and costs of wrong decisions (false 
positives and negatives, Type I and II errors, etc.)

• The “correct” answer is not pre-determined
– In 1936, R. A. Fisher derived the first multivariate normally based classifier 
– In 1976, the senior author showed Fisher’s data were lognormally distributed 

and a transformation gave more accurate results
– Fisher’s error was 3.3%; the author’s was 2%
– Is a difference between 3.3% and 2% meaningful to your application?

Fisher’s paper is “The Use of Multiple Measurements in Taxonomic Problems,” Annals of Eugenics, 
7, 179-188. The lognormality of the data was shown in the senior author’s PhD thesis Studies in 
Bayesian Discriminant Analysis, and published in the 1979 paper “Multivariate Non-Gaussian Bayes 
Discriminant Analysis", Statistica, 1979:1, pp 13-24, with C. P. Tsokos.

Approved for Public Release, Distribution Unlimited: Northrop Grumman Case 09-2031 Dated 10/22/09
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Software Code Inspections

Case Study #1
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Reality, Part Two

• Highly asymmetrical
• Flunks Anderson-

Darling test for 
normality (p < 0.005)
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ASU Cost Model

The control chart
• Penalizes due diligence in reviews

– 11% false alarm rate (Chebyshev’s inequality)
• Doesn’t flag superficial reviews

– No lower control limit
• Skews the central tendency

– Average cost looks like it is busting the budget

The data

What do you do?
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Stabilizing the Data

• Senior author’s presentation at 2005 
CMMISM Technology Conference 
demonstrated how a log-cost model can 
successfully control software code 
inspections

Logarithms 
Can Be Your 
Friends

November 16, 2005

Richard L. W. Welch, PhD
Chief Statistician
Northrop Grumman Corporation

Controlling Peer Review Costs

– Peer review unit costs (hours per line of code) behave like commodity prices in 
the short term

– Short term commodity price fluctuations follow a lognormal distribution
– As a consequence, commodity prices follow a lognormal distribution
– Therefore, taking the natural logarithm of a sequence of peer review costs 

transforms the sequence to a normally distributed series

Notes:
• Details on the log-cost model, “one of the most ubiquitous models in finance,” can be found at riskglossary.com 

(http://www.riskglossary.com/articles/lognormal_distribution.htm)
• Prior CMMI Technology Conference & User Group papers are published on-line at: http://www.dtic.mil/ndia/

Approved for Public Release, Distribution Unlimited: Northrop Grumman Case 09-2031 Dated 10/22/09
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Our Data on Logs

Anderson-Darling 
test p < 0.759
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ASU Peer Reviews

• Impacts
– Normality of the transformed data 

minimizes false alarms
– We catch superficial reviews
– Code reviews do not bust the budget

• Demonstrated utility & applicability
– > 7,000 peer reviews over 6 years provide 

large sample validation
Review Closed Date
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Using Lognormal Probability Density Function

Data Through Review 7351 on 8/25

Demonstrating an in-control, stable process
Approved for Public Release, Distribution Unlimited: Northrop Grumman Case 09-2031 Dated 10/22/09



20

Lognormal Factoid
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Since the sample mean of the transformed data is

The inverse transformation results in the geometric mean of 
the untransformed data

As a result of a similar derivation, the inverse transformation of the 
sample standard deviation is the geometric standard deviation of the 
untransformed data
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Drawing Errors

Case Study #2
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Drawing Errors

• Drawing errors follow a Poisson distribution
– Data are discrete counts of defects per drawing 

– C charts are commonly used to analyze 
Poisson-distributed defect data

C charts detect performance changes poorly

Tot Errors >=3210
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Chart of Observed and Expected Values

• C-charts lack insight 
– No ready indicator of deteriorating or improving process performance

• Control limits establish the process capability for expected number of defects 
per drawing

– Special causes are lagging indicators

– Fractional control limits confuse data analysts
– For example, UCL =2.4 defects. What are 2.4 defects? 3 defects are a 

special cause and 2 are not. But what about a run of consecutive drawings, 
each with two errors?
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C Chart Performance

• How sensitive is the C Chart to changes in process performance?
– Baseline phase simulated using Poisson distribution with mean = .4
– Increased mean value by an additional 25% in two successive 

steps
– Sample size = 60 drawings

Simulated 25% mean shift Additional simulated 25% mean shift

• Is this a stable process?
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Detecting Shifts in Process Performance

• Wheeler suggests transforming raw “counts of events” to 
“measurements of process activity” (i.e. rates)

• The defect rate series is plotted on an Individuals & Moving Range 
(ImR) chart & analyzed
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Yes, this was suggested by the same guy who doesn’t like transformations. See Donald 
Wheeler, Understanding Variation: The Key to Managing Chaos, 2nd edition, SPC Press, 
2000, pp. 100-104.
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ImR Control Chart Sensitivity to Shifts in Process 
Performance

– Same simulation as the C chart
– Data was transformed to establish defect rates
– Control chart parameters computed from the baseline phase
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Stability validated

I can 
see it !!!• Is this a stable process?
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Sensitivity Comparison
• This simulation models a 10% process shift
• What chart would you use?

Baseline Phase

Baseline Phase

Simulated 10% Mean Shift

Simulated 10% Mean Shift
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• The mR chart portion monitors the process based on points representing 
the differences (i.e., range) between each 2 consecutive individual data 
points
– Assesses whether the process variation is in control
– The mR chart should be in control before you establish the baseline with the I chart 
– If the mR chart is not in control, then the control limits for the I chart will be inflated 

(too forgiving) and may fail to signal an out-of-control condition

• The I chart portion monitors process based on individual data points 
(defect rates)
– Assesses whether the process center (x) is in control
– The process centerline is calculated from the average of the individual data points
– The control limits are set a distance of 3σ above and below the center line and provide 

a visual display for the amount of process variation expected

• The ImR chart will not be hyper sensitive to rare events containing 
numerous errors

ImR Chart Factoids
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Software Test Failures

Counterexample
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SW Test Returns – Poisson Model

• How often have you heard, as a universal truth
– “Defects are Poisson distributed”?

• How about reality, as the Test group sees it?
• The u-chart plots SW test failures

– This assumes SW test failures follow a Poisson distribution
– Being diligent, we check the goodness of the model

Test >=6543210
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Chart of Observed and Expected Values

χ2 Test for Poisson

N  DF   Chi-Sq  p-Value
54   5  88.7177    0.000

Not a good fit
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Median

Mean

A -Squared 2.38
P -V alue < 0.005

Anderson-Darling Test for Normality

95% Confidence Intervals

Summary for Sqrt(1+Test)

Does Transforming the Data Help?

• Square root transformation
– As recommended by Montgomery for 

data we thought should follow a 
Poisson model

• Lognormal
– When we try a Box-Cox 

transformation, we discover the 
optimal parameter lambda = 0

– This is the same as a lognormal 
transformation
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Discussion

• Sometimes no model seems to work
– May have multiple failure mechanisms, with mixing of distributions
– Need lots of data to sort out

• In this case, no obvious transformation suggests itself
• We revert to the basic principle that simpler is better

– Individuals chart
– Not great, but the simplest choice
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Mean

Median

Mean

AD        3.258
P-Value < 0.005

Not much better, 
but simple
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Summary

• The Central Limit Theorem is a powerful ally 
• A transformation can be worthwhile
• Transformations can be difficult
• Due diligence requires that we investigate and compare using 

raw data vs. transformed data
• Simpler is better unless there is harm
• The “correct” answer is not pre-determined

When used carefully, transformations expand analysis capability
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