

Copyright © 2009 Raytheon Company. All rights reserved. *Customer Success Is Our Mission* is a registered trademark of Raytheon Company.

Raytheon

Customer Success Is Our Mission

Changing Our Approach

How to take Missile Systems from a Business that...

To a Business that

Design 2010

Raytheon Missile Systems

Why We Need Change

70% of the cost is determined prior to the start of development Yet 76% of the cost is spent post development

Understanding What's Critical to Our Business

The design process drives effective production

Raytheon

Missile Systems

SW SE ΗW SE SW ΗW SW SE HW SWSEHW SyDe SystDeve System Development

Pre-Concept			Development	Production	Field/Maint
1st	SWS	SW /	21sd	1st	1st
		SB E	2nd		
		HHWV/	2nd		

Some Uniqueness of RMS

- High Volume Production focus on full life-cycle costs
 - Small savings per unit >>> Large savings in development
- Families of weapons (missiles, projectiles, etc.) but each with divergent performance objectives

Some launched from helicopters Some launched from ships, ground, Some launched from air**sizine**

Some with rocket motors

Some are small, some are large

High Maturity "Epiphany"

Being Predictable Means...

Pre-Concept Development Manufacturing Field

Process Performance Models and Baselines allow predictions to be made throughout the entire product development lifecycle

Existing Robust Design Methods Support the Transition

Raytheon Missile Systems

Robust Design - Balancing Performance, Producibility and Affordability in Design

Design For Performance

- Quality Function Deployment
- Parameter Diagrams
- Key Characteristics
- Statistical Design Methods
 - General Orthogonal Solutions
 - Multi-Objective Optimization
 - Sensitivity Analysis
 - Monte Carlo Analysis
 - Requirements Allocation
 - Design of Experiments
 - Data Collection and Analysis
 - •Fit Data to PDFs
 - •Design of Tests
 - •Impact of MSE
 - •Analysis of Failed Tests
- Defect Containment Process
- Reliability Prediction

Design For Producibility

- DFMA Workshop
- Producibility Assessments
- Process Capability Analysis
 - PCAT
- Mechanical Tolerancing
 - GD&T
- Process FMEA
- Process Modeling

Design for Affordability

- Cost as an Independent Variable
 - Acquisition Reform Initiative
 - Warfighter participation
 - Total Ownership Costs
 - The "What" of Affordability
 - Conceptual Trade Studies

•Design to Cost

- Detailed Design Trade Studies
- Cost Models and Cost Tracking
- DTC Metric
- Cost Estimating & Tradeoff
 Analysis
 - Price H/M/S
 - RPCM & RAYCOST

Missile Systems

Raytheon

Robust Design Methodology

Page 13

Robust Design Analysis results in...

Results from Crystal Ball[®] Monte Carlo SW

From Statistical Design Methods for Engineers Class

Understanding Process From a Mathematical Perspective

Understanding Design Margins

Raytheon

Missile Systems

Cost Impact of Design Margin

The Advantage of Specifying the Right Amount of Design Margin

Quantitative Measurement of Design Margin

- PNC is the probability of noncompliance
- PNC = 1 yield
- It is the Probability that a response of interest does not fall within required specification limits
- It is a statistic that allows us predict the achievement of the objectives of any process
- It is one of the most important measurements to evaluate process performance

It is the quantitative measure of design margin

PNC Measures Customer Satisfaction

Customer Satisfaction = Function(Cost, Schedule, Performance, etc.)

- Cost = function (Design Capability, Process Capability(1-PNC))
 - The Base cost of the design is set by the Architecture and CAIV driven changes. It is the accumulated cost of all levels of the design
 - For items that can be reworked: Cost = Base cost + PNC * Rework Cost
 - For items that are scrapped: Cost = Base Cost / (1-PNC)
- Schedule = function (Design Time, Mfg Time, Rework & Repair time)
 - PNC is a measure of how much rework we must perform, and that takes time
- Performance = function (Design, Design Margin (PNC))
 - The PNC on Key Performance Parameters tells us how often the customer requirements are not satisfied

Graphic Representation PNC

PNC is a prediction of the percent of time that a response of interest will fall outside of its specification limits

Design Margin Measures the Success of the Robust Design Process at any Level

From Statistical Design Methods for Engineers Class

Raytheon

Missile Systems

Some Tools used at Raytheon Missile Systems for Robust Design

Equation-Based Tolerance Analysis and PNC Prediction

Parameter Allocation

Multi-Objective Optimization for Parameters

Antenna Case Study

Debra Herrera Dave Frank

*All values presented in the case study are fictitious

Program Followed Robust Design Process

- Program's process documented in the DFSS Plan
- A preliminary listing of Key Characteristics was developed based on program objectives and reviewed with the appropriate stakeholders

	Specification	Specification		
Status	Number	Description	Paragraph Number	Paragraph Description
KPC	4482922-906RV3	CIDS Antenna Sub Assembly	5.5.8.9.4.2-4	Peak Sidelobe
KPC	4482922-906RV3	CIDS Antenna Sub Assembly	5.5.8.9.7.2-3	Boresight Alignment
KPC	4482922-906RV3	CIDS Antenna Sub Assembly	5.5.8.0.6	Pattern Gains
KPC	4482922-906RV3	CIDS Antenna Sub Assembly	5.5.8.0.6	Auxiliary Pattern Gains
KPC	4482922-906RV3	CIDS Antenna Sub Assembly	5.5.8.7	Return Loss
KPC	4482922-906RV3	CIDS Antenna Sub Assembly	5.5.8.7	Insertion Loss
KPC	4482922-906RV3	CIDS Antenna Sub Assembly	5.5.8.12.3	Band Aid Coverage
KPC	4482922-906RV3	CIDS Antenna Sub Assembly	5.5.8.11.7	Band Guard Coverage

 The antenna design process was chosen as one of the key processes (subprocess) to apply statistical design methods due to sensitivity of seeker performance to variation and the low capabilities of past antenna designs

Team Started With the Prototype Missile Seeker Raytheon Missile Systems

- Requirements were allocated to sub-components
 - Those directly related to Key Performance Parameters were set with "challenge" limits
 - Sub-component model predictions met allocated antenna requirements
 - However, initial prototype antenna model lacked resolution to predict resulting system-level sensitivities to known manufacturing tolerances
- Data was collected from Proof of Design (PoD) and Proof of Manufacturing (PoM) units
- Multiple deficiencies and inconsistencies in early units' performance
- Customer / Program Office expecting completed design
 - \$XM Award Fee tied to exhibiting sufficiency of design
- DCAT (Design Capability Analysis Tool) was selected to analyze performance and design margin

Fig. 1: Block Diagram of a Canonical Missile Seeker Antenna Sector

Data Analyzed to Measure Design Margin via PNC

- Data Conversion
 - Data put into Excel format and converted to linear terms
 - PNC calculations performed by the Data Collection Analysis Tool (DCAT)

	DCAT Prepare D. Fr				oared By: Frank	Show Test Variation ?								
Rolled Yield:	0.9444		PNC:	0.05	56	CI	nart #:	4	-	DATE:	3/25/2008			
TEST DESCRIPTION	UNITS	LOWER LIMIT	UPPER LIMIT	EXCLU DE?	TEST AVG	теsт П	Ср	Cpk	PNC lower	PNC upper	PNC Observed	FTY	Rolled Yield	# DATA PTS
R1 - Frequency 10		-3.241	1.651		0.000	1.000	0.815	0.550	8.911E-03	1.280E-12	8.911E-03	0.991	0.991	7
R2 - Frequency 10		-8.902	13.414		0.000	1.000	3.719	2.967	1.280E-12	1.280E-12	2.560E-12	1.000	0.991	8
R3 - Frequency 10		-2.439	1.326		0.000	1.000	0.627	0.442	3.825E-02	1.280E-12	3.825E-02	0.962	0.953	8
R4 - Frequency 10		-3.539	1.252		0.000	1.000	0.799	0.417	6.767E-03	2.453E-03	9.221E-03	0.991	0.944	8

DCAT tool also provides a histogram of the data and the curve fitted to the data for PNC calculations.

DCAT Takes You Beyond Stoplight (Qualitative) Performance Charts

Reviewing the Antenna Data

- PNC threshold established
 - Based on number of problem parameters and program objectives
 - Measurement capability revisited to insure we are not chasing test problems
- Rolled yield
 - Focus on the element contributors driving cost and performance
 - Use Yield prediction to support ROI for investigations/improvement

ScrapCost = UnitCost * PNC * NumUnits

*All values presented in the case study are fictitious

PNC Simplifies Cost Calculations – Measures Affordability

Performance, Producibility and Cost Issues Identified

- Due to excessive variation in the predicted performance of the design, the yield was calculated to be only X% (WAY lower than the goal)
- The antenna design was already well over the cost objective, and no acceptable rework procedure is authorized
 - For each acceptable antenna that could be integrated into the next assembly level, 3 to 4 other antennas would be scrapped which would prevent the program from achieving its producibility and affordability goals

It was predicted that we could not produce the product at a price the customer could afford

Causal Analysis & Resolution Plan

Action Plan:

- Revise and reallocate requirements where possible to meet the antenna design process capability and know manufacturing capability
- Improve the antenna design process by reducing variation of lower level KPCs
- Choose an improved supplier process to better match the antenna performance requirements
- Initially, Systems Engineering did not want to revise and reallocate the antenna requirements since this would require a change to their systems design process
 - Quantifying design margin in PNC and showing the cost impact of \$\$ for dBs made the Chief Engineer champion the robust design process
 - Providing Systems Engineering a quantitative impact to their "challenge" performance requirements enabled more productive "dB for dollars" trade decisions

Process Changes Made to Match Design Capabilities

- Systems Engineering
 - Initial systems design process did not have robust models for many antenna performance parameters
 - 6DOF simulation based on extremely conservative cases and "tribal knowledge"
 - Adjusted systems design process to cases observed in field testing (data-driven) – 6DOF models adjusted to new data / knowledge
 - Result: Some of the antenna requirements were relaxed and reallocated based on a \$\$ for dB trade study
- Antenna Design
 - Antenna design identified the key variation drivers and susceptibilities in the antenna
 - Adjusted design process and brought in supplier manufacturing engineers who worked with the team to match both the design process and the manufacturing process to the desired performance capabilities

Results / Future Activities

- Predicted yield increased from X% to over 4X%
 - Unit costs reduced over 40%
- Cost avoidance of over \$XM
- \$XM Award Fee criteria met 3 months ahead of schedule Award Fee won
- Enhanced Antenna Modeling
 - Parameterized full-wave EM sub-component models cascaded to create full-antenna model capable of predicting physical geometry effects on gain/pattern and S-parameter performance
 - Tools are in place to accurately predict performance of combined elements
- Design to Cost
 - PNC simplifies cost calculations on parts
 - Goal is to provide PM cost data for making effective ROI decisions
- Critical Parameter Management
 - PNC calculations on POD/POM hardware will be compared with prediction and tracked
- Customer Understood and Accepted Design Maturity

From Customer's Technical Representative: "I wish all of our technology developers would use this approach for predicting manufacturing maturity."

Questions

That's All Folks

Tom Lienhard <u>Thomas G Lienhard@Raytheon.com</u> (520) 794-2989

Raytheon Missile Systems Achieves CMMI Level 5 + IPPD

Raytheon	
CMMI Lead Appraiser Comments	
 Unique high maturity approach Not many other organizations have achieved level 5 +IPPD (industry-wide) No others like this - Business driven vs. CMMI model driven level 5 (Design 2010) Covers complete product life cycle 	
 Promote RMS high maturity approach to be the gold standard across 	CMMI Level 5 + IPPD - Global Strengths Identified by the Appraisal Team
 Raytheon and Industry Increase sales (Put RMS on the map) Be the supplier of choice Leverage your process strengths, which includes high maturity, for use in proposals 	 The organization's statistical understanding and modeling begins with the pre-concept phase and continues through operational and technical simulations as well as production. RMS models not only fielded system performance, but development and manufacturing processes as well.
 The organization is confident in its process usage; however, is open to constructive feedback. 	 The organization uses process performance models and process performance baselines during pre-concept, proposal, requirements analysis and design, implementation, proof of design, proof of manufacturing, low rate initial production, and production.
8/13/2009 Page 2	 The projects' process composition is a result of an extensive suite of models which statistically predict schedule, producibility, affordability, an technical robustness.
	 The Probability of Non-Compliance (PNC) metric allows a program to quantify, in terms of cost, the probability of meeting its objectives and reduce risk of execution.

CMMI Level 5 + IPPD Results Validate Design 2010