

Overview

Project Definition:

Reduce Rework by Reducing Defect Leakage

Currently, over 30% of the Software Engineering effort is consumed reworking products already deemed "fit-for-purpose". A major contributor to this is defect leakage. Defect leakage is calculated as a percentage by summing the defects attributable to a specific phase that are detected in later phases divided by the total number of defects attributable to that phase. Defect leakage is a good indicator of the quality of the different phases of the software process. Defect leakage for the some software development phases is as high as 75%, where as our goal is set at 20%. Not catching and correcting defects at the earliest point in the process leads to cost and budget over-runs due to excessive rework. By investigating what types of defects go undetected during the various phases, corrections can be introduced into the process to help identify the top defect types.

Software Engineering Effort

Agenda – Six Sigma Toolbox Examples

Thought Process Map

Process Map

Failure Mode and Effect Analysis

What Was Learned So Far

Product Scorecard

What Was Learned So Far – Part 2

Improvement Goal

Distributional Characterization of Data

What Was Learned So Far – Part 3

DOE Conducted

What Was Learned So Far – Part 4

Results

Conclusion

Thought Process Map – Where Are We Headed?

Process Map – Walk the Process

- X Critical (statistical proven critical)
- N Noise (can't or choose not to control)
- S SOP (the standard way to do it)
- C Controllable (can be changed to see effect)

Failure Mode and Effect Analysis – How Can We Mess This Up?

Process or Product Name:	In-Phase Peer Review	Prepared by: Tom Lienhard & Team	Page of
Responsible:	Tucson Software Engineering Process Group	FMEA Date (Orig) 23 Sept 99 (Rev) 29 Sept 99	

Process Step/Input	Potential Failure Mode	Potential Failure Effects	S E V	Potential Causes	0 C C	Current Controls	D E T	R P N	Actions Recommended
What is the process step/ Input under investigation?	In what ways does the process step go wrong?	What is the impact on the Key Output Variables (Customer Requirements) or internal requirements?	How Severe is the effect to the cusotmer?	What causes the process step to go wrong?	es cause FM occu	What are the existing controls and procedures (inspection and test) that prevent eith the cause or the Failure Mode? Should include an SOP number.	How well can you detect cause or FM?		What are the actions for reducing the occurrance of the Cause, or improving detection? Should have actions only on high RPN's or easy fixes.
Peer Review Planning	No Review Team identified upfront w/review package(roles & responsibilities)	Product not reviewed by appropriate disciplines	6	SW plans do not require this	1	SEPG/SQA and peer review of plans	1	6	None
			6	Lack of process awareness	6	Moderator to ensure review package complete (contains reviewers)	6	216	Re-train moderator and conduct process evaluations
	No product evaluation criteria identified with review package	Product not reviewed to customer and/or process requirements	9	SW plans do not require this	1	SEPG/SQA and peer review of plans	1	9	None
			9	Lack of process awareness	6	Moderator to ensure review package complete (contains review criteria)	6	324	Re-train moderator and conduct process evaluations
	No notice or agenda with review package	Team not able to give adequate review time	6	SW plans do not require this	1	SEPG/SQA and peer review of plans	1	6	None
			6	Lack of process awareness	6	Moderator to ensure review package complete (contains notice and agenda)	6	216	Re-train moderator and conduct process evaluations
Product Review	Product not reviewed	Defects not found	9	Adequate time not given to review	6	Moderator and SQD ensure adequate time was given to review product	3	162	None - cultural thing
			9	No or inadequate evaluation criteria	6	Moderator to ensure review package complete (contains evaluation criteria)	9	486	Create generic checklists for site (to highest level) and conduct process
			9	Inappropriate reviewers	6	Moderator to ensure appropriate reviewers	9	486	elpalations mand media to identify required participants on notice & agenda and conduct process evluations
	Metrics not captured	Organization quantitative data incorrect/incomplete	3	SW plans do not require this	1	SEPG/SQA and peer review of plans	1	3	None
			3	Lack of process awareness	9	Moderator to ensure review process followed (metrics captured)	6	162	Re-train moderator and conduct process evaluations

Look, a legend!

Severity

- 9 Defects go to customer
- 6 Defects cause rework
- 3 Data not collected
- 1 No harm/no foul

Occurrence:

- 9 Regular occurrence
- 6 Occurs more than occasionally
- 3 Occurs occasionally
- 1 Rare occurrence

Detection:

- 9 Nothing in place
- 6 Based on individuals
- 3 Check in place, usually works
- 1 Check in place & working

What Was Learned, So Far

<u>Potential causes</u> (factors) high RPN which kept showing up over and over on the FMEA:

- Inappropriate review team ("wrong" moderator, dominant, inexperienced, or yes-people made up the team)
- Lack of process awareness (both unintentional and deliberate)
- No or inadequate review criteria (review what is there not what is missing, biased review based on experience with phase)

<u>Plan</u> to minimize the occurrence and increase the detection:

- Update the process to highlight required participants, their roles and responsibilities on the Notice and Agenda
- Roll-out Peer Review training
- Have SQA perform peer review process evaluations
- Generate common evaluation criteria for all software products that can be used across the entire organization

Use what was learned about factors as an input into DOE

Product Scorecard

Number of defects identified by phase introduced and phase detected (Modified Software Worksheet from Product Scorecard)

Phase Detected

	Planning	Customer	Rqmts. Analysis	Design	Implement ation	Test	Formal Test	Customer Before	TOTAL	Leaked
Planning	29	0	0	0	0	0	0	0	29	0
Customer	0	12	2	0	2	0	5	0	21	9
Rqmts. Analysis	0	0	61	14	29	26	71	1	202	141
Design	0	0	1	323	82	29	38	2	475	151
Implement ation	0	0	1	5	220	43	44	10	323	97
Test	0	0	0	2	1	249	30	0	282	30
Formal Test	0	0	0	0	0	13	597	0	610	0
Customer Before	0	0	0	0	0	0	1	4	5	0
TOTAL	29	12	65	344	334	360	786	17	1947	428

Not All Defects Are Created Equal

Industry Standard* Cost to Detect and Correct Defects (in days)

Phase Detected

Phase Introduced

		Planning	Customer	Rqmts. Analysis	Design	Implement ation	Test	Formal Test	Customer Before
ブ ン	Planning	0.07	0.1	0.19	0.17	0.67	1.23	1.4	0.54
	Customer	0.02	0.15	0.7	1	2.03	2.7	3.23	3.07
う う	Rqmts. Analysis	0	0.1	0.12	0.86	1.13	1.6	0.79	1.65
11111	Design	0	0.11	0.13	0.13	0.1	0.8	3.13	2.64
)	Implement ation	0	0	0.17	0.1	0.7	2.1	2.02	2.33
1140	Test	0	0	0	80.0	0.03	0.08	0.15	0.16
T T	Formal Test	0	0	0	0	0.04	0.18	0.25	0.58
	Customer Before	0	0	0	0	0	0	2.7	3.4

^{*} Motorola, Texas Instruments, Hughes Software Implementation of Six Sigma

Cost of Rework Due to Defects (in Days)

Phase Detected

	Planning	Customer	Rqmts. Analysis	Design	Implement ation	Test	Formal Test	Customer Before	TOTAL	Leaked
Planning	2.03	0	0	0	0	0	0	0	2.03	0
Customer	0	1.8	1.4	0	4.06	0	16.15	0	23.41	21.61
Rqmts. Analysis	0	0	7.32	12.04	32.77	41.6	56.09	0.79	150.61	143.29
Design	0	0	0.13	41.99	8.2	23.2	118.94	5.28	197.74	155.75
Implement ation	0	0	0.17	0.5	154	90.3	88.88	23.3	357.15	203.15
Test	0	0	0	0.16	0.03	19.92	4.5	0	24.61	4.69
Formal Test	0	0	0	0	0	2.34	149.25	0	151.59	2.34
Customer Before	0	0	0	0	0	0	2.7	13.6	16.3	13.6
TOTAL	2.03	1.8	9.02	54.69	199.06	177.36	436.51	42.97	923.44	544.43

What Was Learned, So Far (Part 2)

Using Pareto Charts We Know Where Defects Enter the Process . . .

600

And Where Those Defects Are Detected by the Process . . .

What We Learned......

- Formal test introduced > 30% of defects
- Finding 58% of defects when product is done (i.e., testing)
- 3 Phases account for > 92% of rework due to leakage

Improvement Goal

Same number of total defects introduced in the same phases

Distributional Characteristics of Data

Stability of Entire Process...

P Chart for In Phase

....Then applied to Each Phase

Looks pretty stable within subgroups (projects)...

How About Between the Subgroups?

ANOVA Confirms Our Suspicions

Analysis of Variance for percent

Source	DF	SS	MS	F	P
phase	7	10841.9583	1548.8512	8.701	0.000
project	16	2848.0000	178.0000		
Total	23	13689.9583			

Variance Components

But we sampled only 3 projects - what does the population look like?

Calculating Confidence Intervals...

Descriptive Statistics

Variable: Cust1

Descriptive Statistics

Variable: Req Anderson-Darling Normality Te

Descriptive Statistics

Variable: Design

Anderson-Darling Norr	nality Test
A-Squared:	0.259
P-Value:	0.384
Mean	65.3333
StDev	9.2916
Variance	86.3333
Skewness	-1.18512
Kurtosis	
N	3
Minimum	55.0000
1st Quartile	55.0000
Median	68.0000
3rd Quartile	73.0000
Maximum	73.0000
95% Confidence Inter	val for Mu
42.2518	88.4149
5% Confidence Interva	I for Sigm

58.3951

95% Confidence Interval for Median 55.0000 73.0000

Descriptive Statistics

Variable: Implem

Anderson-Darling No	mality Tes
A-Squared:	0.212
P-Value:	0.536
Mean	68.6667
StDev	4.0415
Variance	16.3333
Skewness	0.722109
Kurtosis	_
N	5
Minimum	65,0000
1st Quartile	65.0000
Median	68.0000
3rd Quartile	73.0000
Maximum	73.0000
95% Confidence Inte	erval for Mu
58.6271	78.7062
95% Confidence Inter-	al for Sigm
2.1042	25.3995
95% Confidence Interv	al for Media
65.0000	73.0000

Descriptive Statistics

P-Value:	0.6
Mean StDev Variance Skewness Kurtosis N	87.66(5.50) 30.33(-2.7E-(
Minimum 1st Quartile Median 3rd Quartile Maximum	82.00 82.00 88.00 93.00 93.00
95% Confidence Int	erval for M
73.985	101.34
95% Confidence Inte	rval for Sig
2.868	34.61
95% Confidence Inter	val for Med
82.000	93.00

Variable: test

Anderson-Darling Normality Te

A-Squared:

Descriptive Statistics

Variable: Form Tst

Anderson-Darling Normality Test 0.189 A-Squared: P-Value: 0.631 StDev Variance Skewness Minimum 97.000 98.000 3rd Quartile 99,000 Maximum 99.000 95% Confidence Interval for Mu 95.516 100.484 95% Confidence Interval for Sigma 0.521 6.285

...Gives Us Plausible Population Range

What Was Learned, So Far (Part 3)

- •Variation between the phases (72%) is greater than variation between projects (28%)
 - need to work largest source of variation what changed between, what didn't, etc.
- •If no action is taken 95% confident that
 - the Requirements Phase will find between 21% 37% of defects in phase
 - the Design Phase will find between 42% 88% of defects in phase
 - the Implementation Phase will find 59% 78% of defects in phase

Design of Experiments (DOE)

Review Ada packages and C++ objects

Four Factors

experience (<2 yrs >2 yrs)

training (No Yes)

review criteria (None Checklist)

number of reviewers (2 >2)

Block by Program

language, management style, schedule pressures

Sixteen Runs 2⁵⁻¹ Half fraction

Resolution V Mains compounded w/4ways, 2 w/3ways

Response Variable

percentage of defects which match SEPG and project leads'

Limitations:

"chunks of code" reviewed were different restrictions on randomization hard to find "team" fulfilling factor levels

DOE Run Results

StdOrder	RunOrder	Program	Experience	Training	Criteria	Num People	% Match
1	1	-1	1	-1	-1	-1	70
5	2	-1	-1	-1	-1	1	55
3	3	-1	-1	-1	1	-1	30
7	4	-1	1	-1	1	1	60
2	5	-1	-1	1	-1	-1	70
6	6	-1	1	1	-1	1	80
4	7	-1	1	1	1	-1	65
8	8	-1	-1	1	1	1	60
9	9	1	-1	-1	-1	-1	45
13	10	1	1	-1	-1	1	55
15	11	1	-1	-1	1	1	35
11	12	1	1	-1	1	-1	55
14	13	1	-1	1	-1	1	80
10	14	1	1	1	-1	-1	80
12	15	1	-1	1	1	-1	55
16	16	1	1	1	1	1	70

DOE Run Chart

Sorting by Response

StdOrder	RunOrder	Program	Experience	Training	Criteria	Num People	% Match
6	6	-1	1	1	-1	1	80
10	14	1	1	1	-1	-1	80
14	13	1	-1	1	-1	1	80
1	1	-1	1	-1	-1	-1	70
2	5	-1	-1	1	-1	-1	70
16	16	1	1	1	1	1	70
4	7	-1	1	1	1	-1	65
7	4	-1	1	-1	1	1	60
8	8	-1	-1	1	1	1	60
5	2	-1	-1	-1	-1	1	55
13	10	1	1	-1	-1	1	55
11	12	1	1	-1	1	-1	55
12	15	1	-1	1	1	-1	55
9	9	1	-1 🔨	-1	-1	-1	45
15	11	1	-1	-1	1	1	35
3	3	-1	-1	-1	1	-1	30

Might have something here

Normal Probability Plot of the Effects

(response is % Match, Alpha = .10)

- A: Experien
- B: Training C: Criteria
- D: Num Peop

Data looks pretty normal

Pareto Chart of the Effects

(response is % Match, Alpha = .10)

Shows Training, Criteria, Experience as the influential factors

Fractional Factorial Fit

Residual Error

Total

Estimated Effects and Coefficients for % (coded units)

Raytheon

0.00

Page 26

0.0

Term	Effect	Coef			
Constant		60.312			
Program	-1.875	-0.938	C1	.1.*	
Experien	13.125	6.562	Show	s same thing	
Training	19.375	9.687	· Training, C	riteria, Exper	rience
Criteria	-13.125	-6.562	as the in	fluential facto	ors
Num Peop	3.125	1.562			
Program*Experien	-1.875	-0.937			
Program*Training	4.375	2.187			
Program*Criteria	1.875	0.937			
Program*Num Peop	-1.875	-0.937			
Experien*Training	-5.625	-2.812			
Experien*Criteria	4.375	2.188			
Experien*Num Peop	-4.375	-2.187			
Training*Criteria	-1.875	-0.938			
Training*Num Peop	1.875	0.937			
Criteria*Num Peop	1.875	0.937			
Analysis of Variance	for % (co	oded units)			
Source	DF	Seq SS	Adj SS	Adj MS	F
Main Effects	5	2932.8	2932.8	586.56	*
2-Way Interactions	10	440.6	440.6	44.06	*

0.0

3373.4

15

Main Effects Plot (data means) for % Match

Interaction Plot (data means) for % Match

What Was Learned, So Far (Part 4)

Experience was no brainier - more is better

Training was no brainier - have to have it!

Phase dependent training, not just peer review training

Number of people was eye opening - didn't make too much difference Since more people cost more money, keep it at 2

Criteria was a shock

Need to do follow-up to see why this was counter-intuitive

Follow up revealed criteria limited the scope of the review, reviewed only what was there, did not use as intended

Raytheon

Other Measures Were Monitored, But Not Part of DOE

Tool Usage

<u>Thought Process Map</u> - big benefit when reviewing project with others. Helps avoid heading down a dead end path before you even start. Makes you ask questions and identify barriers well before you actually get there. Much more tical than first thought. Is a pain to keep up to date

<u>Pareto Chart</u> - Bar chart ordered from largest to smallest. Helped immediately determine which to focus improvements upon for the largest payback and where to ask initial questions.

<u>Control Charts</u> - Distinguishes special and common variation in the process. Helps to develop appropriate action for the type of variation. Showed how process would perform if nothing done to improve it.

<u>DOE</u> - Determined what factors were influential and were to set those factors. Showed that the obvious accepted conclusions are not always an improvement.

Results

stomer efore	TOTAL						Ra	yth	ea	n
0	29									
^	0.4	П	 	0 1	 	• •	4 . 00			

	Planning	Customer	Rqmts. Analysis	Design	Implement ation	Test	Formal Test	Customer Before	TOTAL
Planning	29	0	0	0	0	0	0	0	29
Customer	0	12	2	0	2	0	5	0	21
Rqmts. Analysis	0	0	61	14	29	26	71	1	202
Design	0	0	1	323	82	29	38	2	475
Implement ation	0	0	1	5	220	43	44	10	323
Test	0	0	0	2	1	249	30	0	282
Formal Test	0	0	0	0	0	13	597	0	610
Customer Before	0	0	0	0	_ 0	0	1	4	5
TOTAL	29	12	65	344	334	360	786	17	1947

PHASE

0

D

U

C

D

Number of defects identified by phase introduced/phase detected (from Product Scorecard)

PHASE DETECTED

	Planning	Customer	Rqmts. Analysis	Design	Implementa tion	Test	Formal Test	Customer Before	TOTAL
Planning	235	2	0	3	0	0	0	0	240
Customer	0	22	22	7	4	0	0	0	55
Rqmts. Analysis	0	1	161	13	7	2	0	0	184
Design	0	0	3	173	111	2	0	0	289
Implementa tion	0	0	0	2	342	20	0	1	365
Test	0	0	0	2	2	22	1	0	27
Formal Test	0	0	0	0	0	0	2	1	3
Customer Before	0	0	0	0	0	0	0	3	3
TOTAL	235	25	186	200	466	46	3	5	1166

AFTER IMPROVEMENTS

Page 33

			_						
	Planning	Customer	Rqmts. Analysis	Design	Implement ation	Test	Formal Test	Customer Before	TOTAL
Planning	100%	0%	0%	0%	0%	0%	0%	0%	1%
Customer	0%	57%	10%	0%	10%	0%	24%	0%	1%
Rqmts. Analysis	0%	0%	30%	7%	14%	13%	35%	0%	10%
Design	0%	0%	0%	68%	17%	6%	8%	0%	24%
Implement ation	0%	0%	0%	2%	68%	13%	14%	3%	17%
Test	0%	0%	0%	1%	0%	88%	11%	0%	14%
Formal Test	0%	0%	0%	0%	0%	2%	98%	0%	31%
Customer Before	0%	0%	0%	0%	0%	0%	20%	80%	0%
TOTAL	1%	1%	3%	18%	17%	18%	40%	1%	100%

PHASE

D

U

C

D

Percentage of defects identified by phase introduced/phase detected (from Product Scorecard)

	Planning	Customer	Rqmts. Analysis	Design	Implementa tion	Test	Formal Test	Customer Before	TOTAL
Planning	98%	1%	0%	1%	0%	0%	0%	0%	21%
Customer	0%	40%	40%	13%	7%	0%	0%	0%	5%
Rqmts. Analysis	0%	1%	88%	7%	4%	1%	0%	0%	16%
Design	0%	0%	1%	60%	38%	1%	0%	0%	25%
Implementa tion	0%	0%	0%	1%	94%	5%	0%	0%	31%
Test	0%	0%	0%	7%	7%	81%	4%	0%	2%
Formal Test	0%	0%	0%	0%	0%	0%	67%	33%	0%
Customer Before	0%	0%	0%	0%	0%	0%	0%	100%	0%
TOTAL	20%	2%	16%	17%	40%	4%	0%	0%	100%

PHASE DETECTED

	Planning	Customer	Rqmts. Analysis	Design	Implement ation	Test	Formal Test	Customer Before	TOTAL	Leaked
Planning	2.03	0	0	0	0	0	0	0	2.03	0
Customer	0	1.8	1.4	0	4.06	0	16.15	0	23.41	21.61
Rqmts. Analysis	0	0	7.32	12.04	32.77	41.6	56.09	0.79	150.61	143.29
Design	0	0	0.13	41.99	8.2	23.2	118.94	5.28	197.74	155.75
Implement ation	0	0	0.17	0.5	154	90.3	88.88	23.3	357.15	203.15
Test	0	0	0	0.16	0.03	19.92	4.5	0	24.61	4.69
Formal Test	0	0	0	0	0	2.34	149.25	0	151.59	2.34
Customer Before	0	0	0	0	0	0	2.7	13.6	16.3	13.6
TOTAL	2.03	1.8	9.02	54.69	199.06	177.36	436.51	42.97	923.44	544.43

Raytheon

Cost of Rework due to Defects in Days (from Product Scorecard)

PHASE DETECTED

P	HASE		Plannir	C ustom	erRqmts Analysi	•	Impleme tion	ntaTest	Forma Test	Custom Before		Leaked
	1	Plannin	g 16.45	2	0	0.51	0	0	0	0	18.96	2.51
>	N	Custom	er 0	3.3	15.4	7	8.12	0	0	0	33.82	30.52
	т	Rqmts Analysi		1	19.32	11.18	7.91	3.2	0	0	42.61	23.29
3	R	Design		0	0.39	22.49	11.1	1.6	0	0	35.58	13.09
	0	Impleme tion	nta 0	0	0	0.2	239.4	42	0	2.33	283.93	44.53
	D	Test	0	0	0	0.16	0.06	1.76	0.15	0	2.13	0.37
	U	Forma Test	0	0	0	0	0	0	0.5	0.58	1.08	0.58
	С	Custom Before		0	0	0	0	0	0	10.2	10.2	10.2
	D	TOTAL	16.45	6.3	35.11	41.54	266.59	48.56	0.65	13.11	428.31	125.09

AFTER IMPROVEMENTS

Page 36

Bottom Line Savings vs Goal - Show Me

Raytheon

the Money

Raytheon

Control Limits for Requirements Analysis Phase has no Overlap Whatsoever

Design Phase is More Interesting

Sample Number

Range is much larger which widens the control limits.

However, looking at the scorecard,

- only 1% of defects made it to test, whereas before it was 14%.
- -3.0SL=0.5398 Rework due to leakage was a mere 13 days compared to 156 days!

Control Limits for Implementation Phase Have Significantly Changed With Little Overlap

Conclusion:

- Make decisions based on data.
 - Experience is only one input parameter and can steer you wrong
- The Six Sigma tools can and do apply to software
- A few simple process changes resulted had BIG impact to bottom line!
- •The three phases that were concentrated upon improved greatly
 - Two of the three are above the threshold
- •Quick look at charts show that the process is now in control
- Just measuring the percentage of defect leakage is not the whole story
 - Test injected defects were significantly reduced which resulted in a major cost savings

Page 41

Questions

That's All Folks

Thomas_G_Lienhard@Raytheon.com

(520) 794-2989

