

How I Created Our Peer Review Baselines and Models

CMMI Technology Conference November 16-19, 2009

> Diane Mizukami-Williams Northrop Grumman Corporation

Agenda

- Analyzing the data to find X factors (model inputs)
- Creating the model
- How projects use the model
- Full circle the OPP OID connection

NORTHROP GRUMMAN

Northrop Grumman Information Systems (IS) Sector

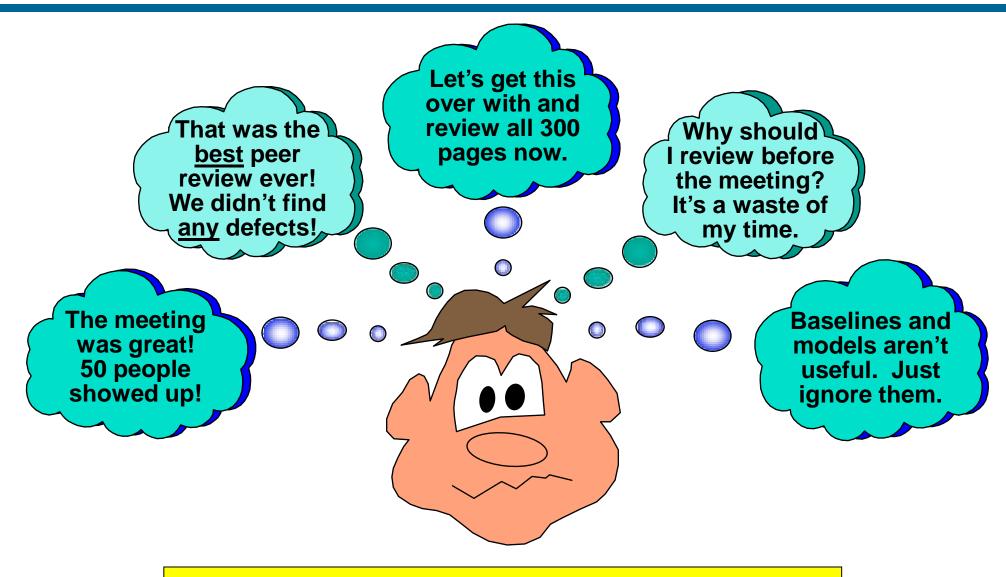
IS Sector

- \$10 billion in sales in 2008
- 7,000 contracts
- 33,000 employees

Products and Services

- Mission support
- Cybersecurity
- Command, control, and communications
- Enterprise applications
- IT & network infrastructure
- Management & engineering services
- Intelligence, surveillance, & reconnaissance

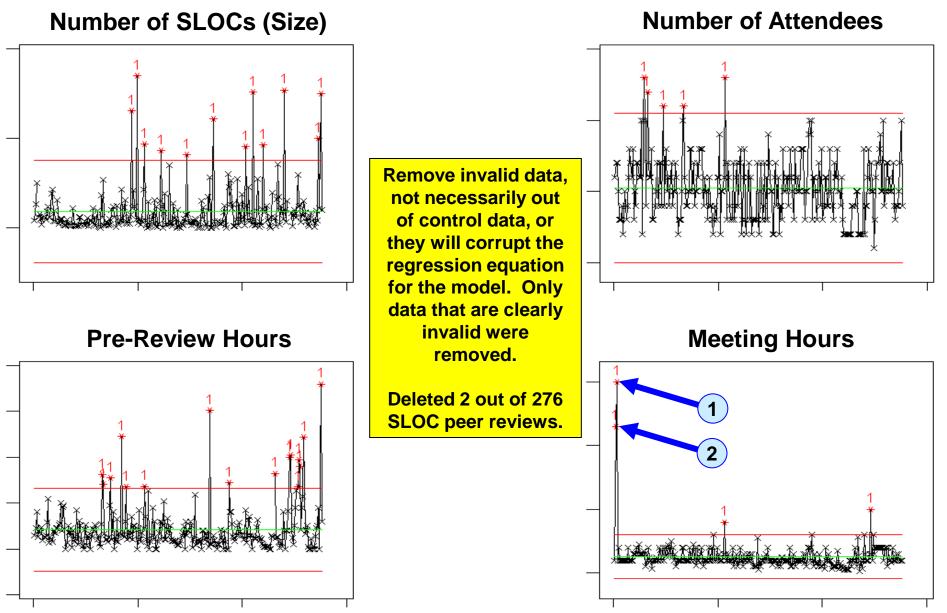
CMMI Appraisals


• Over 80 organizations (over 250 projects) appraised at Level 3 or higher

Why Was This Important to Us? (Goals)

Goal was to change the way people think!

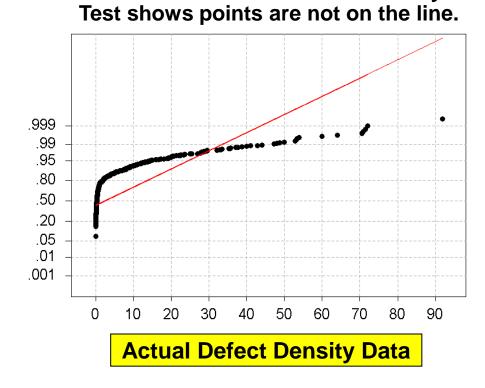
Peer Review Data

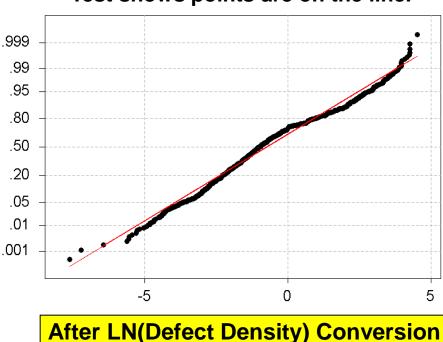

- 5 years of data from April2003 through December 2008
- 1,860 peer reviews and 11,166 action items/defects

•	608	Pages	
•	608	Pages	

- 395 Test Cases
 - 352 Shalls
- 276 SLOCs
 - 123 None
- 85 VI
- 21 Nodes

Created baselines and models for requirements (shalls), design (pages), code (SLOCs), and test (test cases); however, this presentation only focuses on

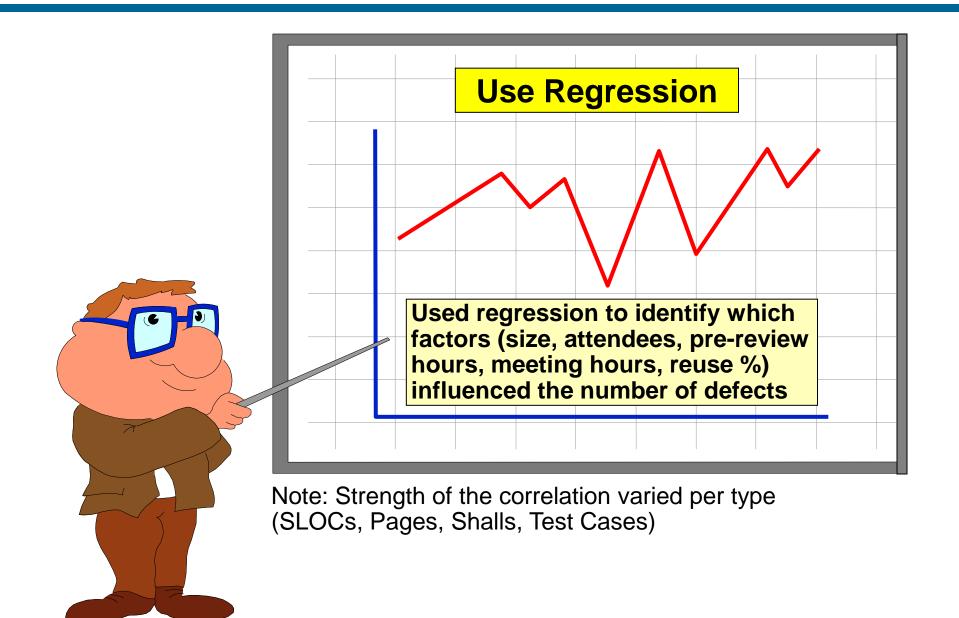



NORTHROP GRUMMAN

Converted to Lognormal Data

- Used Normality Tests to verify whether the data is normal. Data must be normal for regression equations (models).
- When data is not normal, convert to lognormal data using LN(Data)

Data is not normal if the Normality

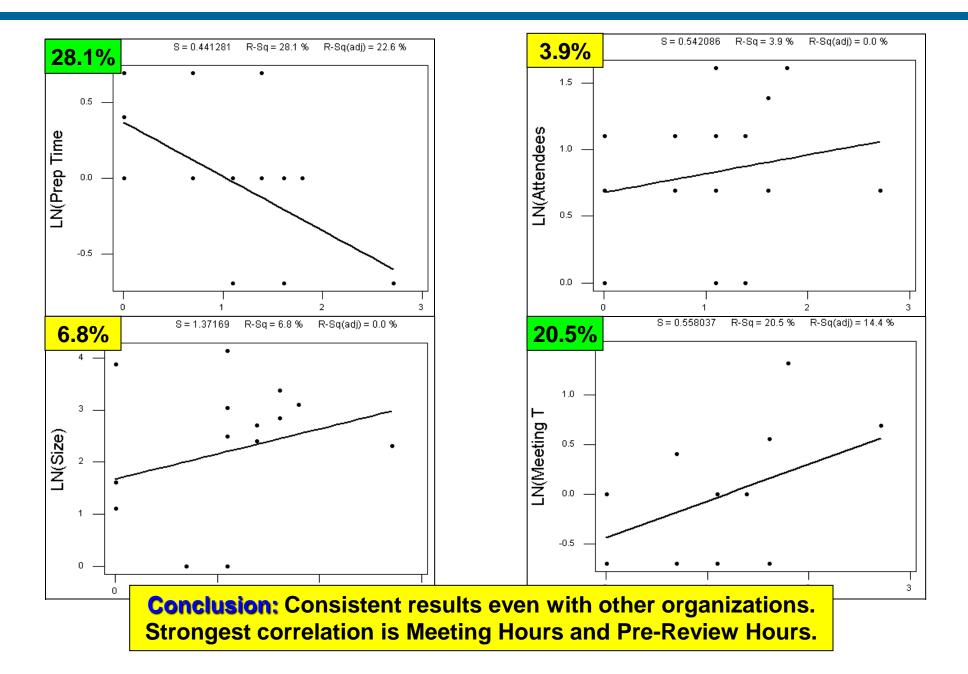


After data is converted, the Normality Test shows points are on the line.

NORTHROP GRUMMAN

Checked Strength of Correlation

Strength of Correlation


Regressior	n Analysis: D	efects versus	Meeting	Hours	Regression Analysis: Defects versus Size
The regress	ion equation	is			The regression equation is
Defects = -	1.17 + 3.55	Meeting Hour	3		Defects = 2.56 +0.000693 Size
Predictor	Coef	SE Coef	Т	Р	263 cases used 11 cases contain missing values
Constant	-1.1659	0.5830	-2.00	0.047	
Meeting	3.5540	0.4275	8.31	0.000	Predictor Coef SE Coef T P Constant 2.5560 0.3670 6.96 0.000
S = 4.424	R-Sq =	20.3% R-S	q(adj) = 2	20.0%	Size 0.0006927 0.0002290 3.03 0.003
_		1)		S = 4.928 R-Sq = 3.4% R-Sq(adj) = 3.0%
Regression	Analysis: De	efects versus	Pre-Revi	iew Houl	
					Regression Analysis: Defects versus Reuse %
-	ion equation				
Defects = 1	.26 + 0.449 1	re-Review Ho	ırs		m
273 cases u	sed 1 cases (contain missi	ng values		The regression equation is Defects = 3.18 - 0.0035 Reuse %
Predictor	Coef	SE Coef	Т	Р	Predictor Coef SE Coef T P
Constant	1.2622	0.3593	3.51	0.001	Constant 3.1799 0.3276 9.71 0.000
Pre-Revi	0.44861	0.05620	7.98	0.000	Reuse % -0.00348 0.01234 -0.28 0.778
S = 4.463	R-Sq = 1	19.0% R-S		.8.7%	S = 4.954 R-Sq = 0.0% R-Sq(adj) = 0.0%
Regression	Analysis: De	efects versus		es	5
0	,				Conclusion: No correlation for Reuse
The regress:	ion equation	is			Conclusion, no correlation for neuse
Defects = O	.012 + 0.599	Attendees			1. Meeting Hours 20.3%
273 cases u	sed 1 cases (contain missi:	ng values		2. Pre-Review Hours 19.0%
			-		3. Attendees 7.2%
Predictor	Coef	SE Coef	Т	P	4. Size 3.4%
Constant	0.0122	0.7436	0.02	0.987	
Attendee	0.5989	0.1306	4.59	0.000	5. Reuse 0.0% (also P-value is hig
		7.2% D.C.	q(adj) = 6	: 0%	
S = 4.778	R-Sq = 1	1.25 R-5	1(au)) = c		

NORTHROP GRUMMAN

8

Strength of Correlation (another organization)

NORTHROP GRUMMAN

Green = P-value = 0.00

Strong correlation

ORTHROP GRUMMAN

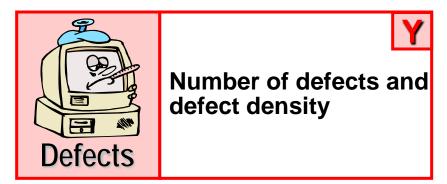
Red = P-value > 0.05 No correlation

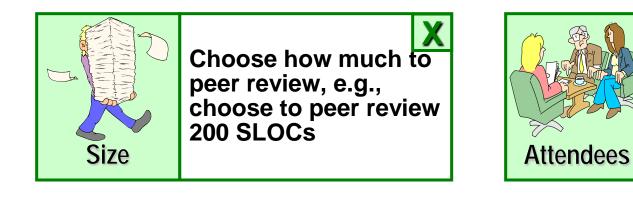
	SLOCs	Pages	Shalls	Test Cases
Size	R-Sq=3.4%	R-Sq=1.2%	R-Sq=0.0%	R-Sq=1.5%
	P-value=0.003	P-value=0.006	P-value=0.898	P-value=0.020
Attendees	R-Sq=7.2%	R-Sq=1.2%	R-Sq=11.2%	R-Sq=8.8%
	P-value=0.000	P-value=0.006	P-value=0.000	P-value=0.000
Pre-Review	R-Sq=19.0%	R-Sq=3.6%	R-Sq=0.0%	R-Sq=3.9%
Hours	P-value=0.000	P-value=0.000	P-value=0.778	P-value=0.000
Meeting Hours	R-Sq=20.3%	R-Sq=3.3%	R-Sq=9.4%	R-Sq=17.6%
	P-value=0.000	P-value=0.000	P-value=0.000	P-value=0.000
Reuse %	R-Sq=0.0%	R-Sq=1.0%	R-Sq=0.0%	R-Sq=0.5%
	P-value=0.778	P-value=0.013	P-value=0.735	P-value=0.169

Conclusion: Table easily shows which X factors should be used for the SLOCs, Pages, Shalls, and Test Cases models and which should be discarded. Don't include Reuse % just because your gut instinct tells you to.

Regression Equation for Model

Regression Analysis: LN (Defects) versus LN (Size), LN (Attendees),


The regression equation is LN (Defects) = 0.158 + 0.0858 LN (Size) - 0.011 LN (Attendees) + 0.217 LN (Pre-Review Hours) + 0.528 LN (Meeting Hours)								
184 cases us	sed 90 cases	contain miss	ing values					
Predictor		SE Coef	Т	P	VIF			
Constant	0.1581	0.4056	0.39	0.697				
LN (Size	0.08578	0.05092	1.68	0.094	1.3			
LN (Atte	-0.0110	0.1568	-0.07	0.944	1.5			
LN (Pre-	0.21727	0.09789	2.22	0.028	2.0			
LN (Meet	0.5278	0.1359	3.88	0.000	1.4			
S = 0.7613	R-Sq = 2	?5.4% R-S	q(adj) = 2	3.8%				


Note: VIF > 5 means if you include that factor in the equation, it will distort the results, i.e., inflate the results

Conclusion: Attendees had a large P-value; however, Variance Inflation Factor (VIF) is < 5 so using all the X factors should be okay in the regression equation.

Final X Factors and Y Outcome

Choose how many people to invite to the peer review, e.g., choose to only invite 3 people

Choose how long to schedule the meeting, e.g., choose a 1 hour meeting

Choose minimum hours to review prior to the meeting (most hours spent by a reviewer, not the total number of hours)

Peer Review Model

 Model is deterministic, i.e., provides a single value, and probabilistic, i.e., provides a range of values (80% confidence interval)

NORTHROP GRUMMAN

Confidence intervals in Excel are very complicated

Keep it Simple St even a child can unde	erstand it)	Hide the Intelligence (hide complexity from the user)					
Inputs Product Type: Size: Number of Reviewers: Pre-Review Hours: Meeting Hours: Confidence Level:	SLOCs 100 6 3.00 1.50 80%	Constant Size: Attendees: Pre-Review Hours: Meeting Hours: Analysis of Variance MSE##	Coef x[h] 0.15810 1.000000 0.08578 4.6051702 -0.01100 1.7917595 0.21727 1.0986123 0.52780 0.4054651 183 0.579612 1.286195 1.286195				
Outputs Minimum Defects: Minimum Defect Density per Unit:	16.34 0.16	Matrix XPXI##	0.2838860 -0.0302640 -0.0302640 0.0044730 -0.0775390 0.0044690 0.0224810 -0.0031290 0.0204910 -0.0022300	0.0044690 0.0424370 -0.0142430	0.0224810 -0.0031290 -0.0142430 0.0165320 -0.0084950	0.020491 -0.002230 -0.000703 -0.008495 0.031858	
Defects: Defect Density: Maximum Defects: Maximum Defect Density per Unit:	26.74 0.27 37.13 0.37	X[h] Transpose Product Standard Error Y[fit]	1.0000000 4.6051702 0.0385902 -0.0059994 26.7893454 26.7387093	1.7917595 0.0031458	1.0986123 -0.0027308	0.405465 0.012546	

How Projects Should Use the Model

Effective Review

Inputs					
Product Type:	SLOCs				
Size:	100				
Number of Reviewers:	6				
Pre-Review Hours:	3.00				
Meeting Hours:	1.50				
Confidence Level:	80%				
Outputs					
Minimum Defects: Minimum Defect Density per Unit:	16.34 0.16				
Defects: Defect Density:	26.74 0.27				
Maximum Defects: Maximum Defect Density per Unit:	37.13 0.37				

Not as Effective Review

Inputs						
Product Type:	SLOCs					
Size:	400					
Number of Reviewers:	3					
Pre-Review Hours:	0.50					
Meeting Hours:	1.00					
Confidence Level:	80%					
Outputs						
Minimum Defects: Minimum Defect Density per Unit:	30.79 0.08					
Defects: Defect Density:	37.28 0.09					
Maximum Defects: Maximum Defect Density per Unit:	43.77 0.11					

Peer Review Planning

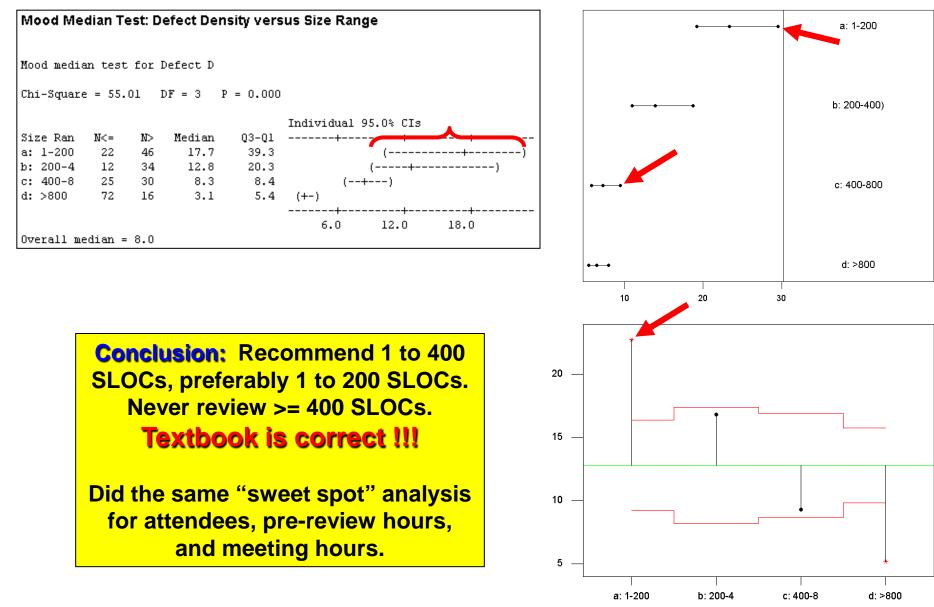
Do "what-if" analysis with the controllable factors to determine optimal settings. Use different settings depending on cost and schedule constraints, critical high risk products, etc.

After Peer Review is Completed

Enter actual data and see if results are > minimum. If < minimum, consider another peer review if the peer review was ineffective.

Full Circle - Used OPP for OID

- OPP analysis uncovered "sweet spots" where peer reviews were more effective, i.e., Defect Density was higher
- Identified "Sweet spots" for:
 - Size
 - Attendees
 - Meeting Hours
 - Pre-Review Hours
- "Best Kept Secrets of Peer Code Review" textbook by Jason Cohen, "LOC under review should be under 200; not to exceed 400."
- Determine whether constraining peer reviews to the "sweet spots" will consistently result in higher quality peer reviews
- If Defect Density is consistently higher, modify the standard process to recommend the "sweet spots"


Quality and Process Performance Goals

- Goal for process performance is to improve the efficiency of code peer reviews, i.e., more cost effective
 - Too many reviewers do not improve Defect Density
 - Long meetings do not improve Defect Density
- Goal for quality performance is to improve Defect Density
 - Less SLOCs increases Defect Density
 - Adequate preparation increases Defect Density

What is the "Sweet Spot" for Size

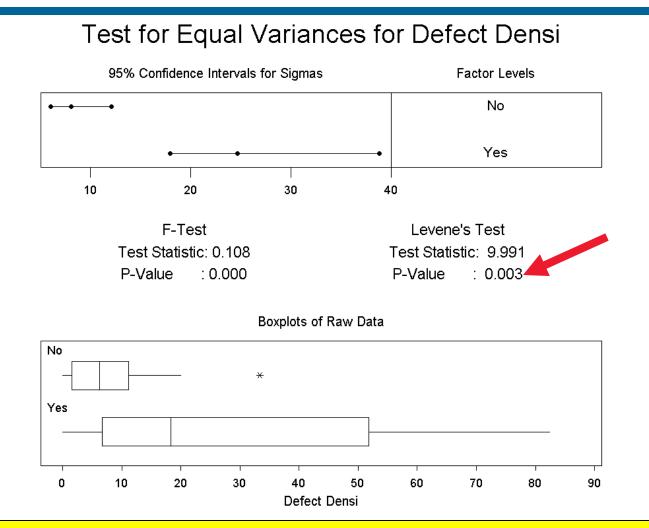
Provided Baselines for Size

Descriptiv	ve Statistics	: LN (Defeo	t Density) ł	y Size Ran	ge	
Variable	Size Ran	N	N*	Mean	Median	TrMean
LN (Defe	a: 1-200	50	28	3.194	3.155	3.219
	b: 200-4	41	5	2.674	2.630	2.695
	c: 400-8	49	6	2.1357	2.2900	2.1444
	d: >800	81	16	1.197	1.200	1.197
Variable	Size Ran	StDev	SE Mean	Minimum	Maximum	Q1
LN (Defe	a: 1-200	0.736	0.104	1.670	4.280	2.633
	b: 200-4	0.775	0.121	0.920	3.990	2.160
	c: 400-8	0.6825	0.0975	0.4900	3.5700	1.5650
	d: >800	1.072	0.119	-1.180	3.510	0.660
Variable	Size Ran	Q3				
LN (Defe	a: 1-200	3.863				
	b: 200-4	3.340				
	c: 400-8	2.5650				
	d: >800	1.970				

Provided the same baselines for attendees, pre-review hours, and meeting hours.

OID for Constrained Peer Reviews Pilot[®]

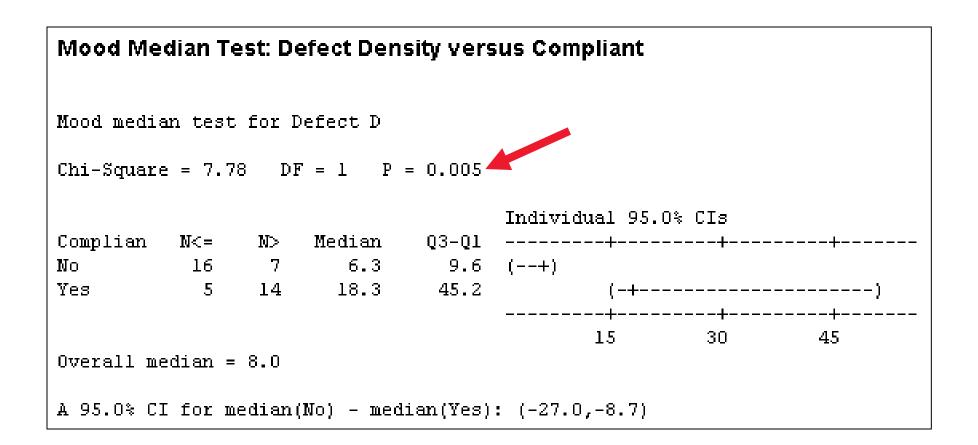
- Briefed <u>all</u> software projects on the "sweet spots"
- "Sweet spots" were provided for size, meeting hours, pre-review hours, and number of attendees
- 19 peer reviews were 100% constrained, i.e., used <u>all</u> "sweet spots"
- 23 peer reviews did whatever they felt was appropriate, and did <u>not</u> use all "sweet spots"
- Used multiple Hypothesis Tests to compare Defect Density for constrained (19 peer reviews) versus nonconstrained (23 peer reviews)



Defect Density Mean

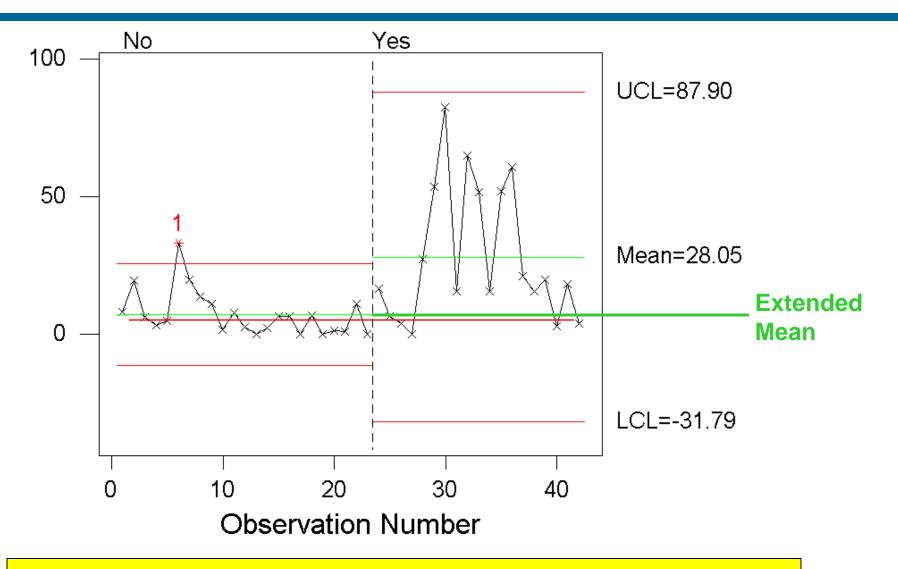
Conclusion: Defect Density mean for constrained peer reviews was statistically significantly higher. A set of constrained peer reviews will always have a higher Defect Density mean.

Defect Density Variation



NORTHROP GRUMMAN

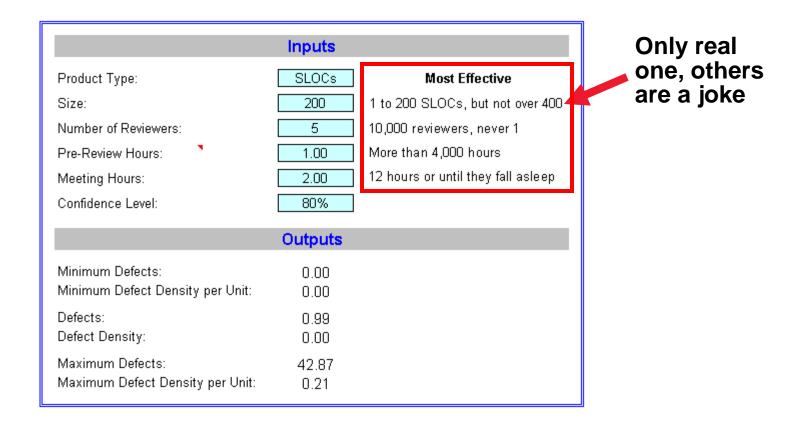
Conclusion: Test for Equal Variance hypothesis test shows the variation is statistically significantly different (P-Value < 0.05). Unconstrained peer reviews were consistently poorer.



Defect Density Median

Conclusion: Mood Median hypothesis test shows the median is statistically significantly different (P-Value > 0.05). A set of constrained peer reviews will always have a higher Defect Density median.

Defect Density Control Chart



NORTHROP GRUMMAN

Conclusion: Only 4 of the 19 constrained peer reviews were below the mean for the unconstrained peer reviews.

Full Circle OID Improvement Back to Projects

- Pilots showed conclusively that constraining peer reviews to "sweet spots" significantly improves Defect Density
- The model was modified to add "sweet spots" (Most Effective)
- OID was used to improve project performance using OPP analysis

NORTHROP GRUMMAN

Summary

- Analyzing data can identify X factors to use and X factors to discard
- Projects need to understand how to use the model
- Use OID to improve the model and project performance
- Publisher approved writing a textbook that will be called, "Baselines and Models, Duh, I Don't Get It" (taking the train to the airport from a previous conference presentation) or "Baselines and Models for CMMI Process Improvement Practitioners". Manuscript is due to the Publisher by May 2010, for publishing later in 2010. Textbook will contain an expanded version of taking the train to the airport, an expanded version of this peer review presentation, and a different way of estimating hours that will help projects perform better.

Diane.Mizukami@ngc.com, 310-921-1939