Crucial Factors in the Design of Net-Centric Systems

Dr. David Hernandez
Director of Advanced Systems Engineering
Tactronics Holdings, LLC
Creating a Tech/Product Pipeline

PRODUCT DEVELOPMENT – ENGINEERING PERSPECTIVE

• Goal: To create a disciplined engineering framework which supports customer focus, sustained innovation, and quick time-to-market
Divide and Conquer

The Two Components of Success:
- “Doing the right things” and “Doing things right”
- Focus and Execution
NOTE: With proper CONFIGURATION MANAGEMENT and REQUIREMENTS TRACEABILITY, each development program adds to the “capability portfolio” and enhances the execution and predictability (including $) of future jobs.

SYSTEMS ENGINEERING – Divide and Conquer

THE “WHAT?”

CUSTOMER DESIRES OR PERCEIVED CAPABILITY NEED MARKET OPPORTUNITY

Allocation to Disciplines

Disciplines take ownership and define specifications

THE “HOW?”

DID WE MAKE WHAT WE SAID WE WERE GOING TO MAKE?

HOW DO WE DO IT BETTER, FASTER, CHEAPER?

ARE WE GIVING THE CUSTOMER WHAT THEY WANT/NEED?

IS THIS PRODUCT GOOD FOR THE COMPANY?

SYSTEMS ENGINEERS serve as “internal customers”

SUB-SYSTEM#N FUNCTIONAL REQUIREMENTS

... SUB-SYSTEM#2 FUNCTIONAL REQUIREMENTS

SUB-SYSTEM#1 FUNCTIONAL REQUIREMENTS

SYSTEM FUNCTIONAL REQUIREMENTS

ELECTRICAL REQUIREMENTS

SOFTWARE REQUIREMENTS

... **MECHANICAL REQUIREMENTS**

ELECTRICAL SPECIFICATIONS

SOFTWARE SPECIFICATIONS

... **MECHANICAL SPECIFICATIONS**

DESIGN AND IMPLEMENTATION

ELECTRICAL TEST (Unit/Module Testing- Quantitative)

SOFTWARE TEST (Module “Desktop” Testing - Quantitative)

... **MECHANICAL TEST (Unit/Module Testing- Quantitative)**

SYSTEM FUNCTIONAL TEST

DISCIPLINE ENGINEERS => Electrical, Software, Mechanical... Engineers

CUSTOMER DESIRES OR PERCEIVED CAPABILITY NEED / MARKET OPPORTUNITY
Commitment to Discipline

- Implementing a Disciplined Engineering Framework will initially make things appear qualitatively “slower”, “harder”, “more bureaucratic”, “less responsive”…
- The “startup costs” associated with this approach can often elicit significant resistance from staff and management, however the cumulative effect is a more efficient organization and quicker speed to market.
What Makes Engineering “Net-Centric” Different?

• Goal of “Net-Centricity”: Get the right information to the right decision-makers at the right time, irrespective of physical/organizational boundaries

• Net-Centric Operations aim to provide:
 – Shared situational awareness across the battlespace, resulting in:
 • Increased ability to self-synchronize & self-task resulting in:
 – Increased agility in executing the mission and carrying out “commander’s intent”
• Systems Engineering entails:
 – Defining desired customer/stakeholder capability
 – Defining specific system requirements
 – Allocating those requirements to specific sub-systems/software modules
• In the case of Net-Centricity, the “sub-systems” we seek to integrate may already exist

• Consider the much-maligned “stovepipes”:
 – Represent investment in developing technologies/platforms to carry out specific tasks effectively, sometimes refined over years of field deployment
 – Represent significant resource expenditure in training personnel to use these tools
 – Net-Centric sub-systems may be separated by great physical distance, but more importantly, “virtual distance”
 – Technologies underlying Net-Centric capabilities – communications/information dissemination – are relatively dynamic compared to other technologies (“internet pace”)
- Leverage existing capabilities
 - Represent investment in developing technologies/platforms to carry out specific tasks effectively, sometimes refined over years of field deployment
 - Represent significant resource expenditure in training personnel to use these tools
- Leverage existing personnel familiarity
- Respect differences — adapt to the mission need
 - Net-Centric sub-systems may be separated by great physical distance, but more importantly, “virtual distance”
 - Technologies underlying Net-Centric capabilities — communications/information dissemination — are relatively dynamic compared to other technologies (“internet pace”)
What Makes Engineering “Net-Centric” Different?

• Approach:
 – Leverage components that have been developed, deployed, and refined through field testing
 – Maximally leverage knowledge and training that is in place to get capabilities into the field quicker
 – Account for differences across user groups, rather than forcing adaptation, by allowing for tailoring to specific use cases
 – Make systems extensible to incorporate new capabilities
This Approach Applies Across Technology Areas

• Tactronics’ Products Areas Where this Approach to Systems Engineering is Being Applied:
 – Fixed Computing/Processing
 – Human-Machine Interfacing and Displays
 – Mobile Computing
 – Navigational/Mapping and Sensor Processing
 – Networking Infrastructure
 – Power Management
 – Radio Management
 – Specialized Data Manipulation/Transport
 • Audio Intercommunications
 • Beyond-Line-of-Sight Communications
 • Data Acquisition/Monitoring (including Platform Telemetry)
 • Radar Processing/Display
 • Video Processing/Manipulation
 – Networked/Fixed Storage Devices
Example: “Off-the-Shelf” Software
Case Study: Data Distribution
Case Study: Radio Management
Case Study: Systems Integration

TAC SINE™
TACTICAL SYSTEMS INTEGRATION NETWORKS

Any or All Components
Interchangeable / Upgradeable

Standards-Based Computing
& Networking Components

Operation In Multiple
Rugged Environments

“Shopping List” For Integrated
System Solutions

Platform Immaterial Common Line Replaceable Units For:
- Man Portable
- Vehicular Platforms
- Maritime Platforms
- Rotary Wing Aircraft
- Fixed Wing Aircraft
- Forward Staging Bases FSB’s
ANY QUESTIONS?

Contact Info: dhernandez@tactronics.com