USAF Implementation of Recommendations from National Research Council “Pre-Milestone A and Early-Phase Systems Engineering” Study Committee

NDIA Systems Engineering Division Annual Conference San Diego, CA 23 October 2008

Jeff Loren Engineering Policy Branch SAF/AQRE (Alion Science & Technology) 703.588.7845 jeff.loren@pentagon.af.mil
“Pre-Milestone A and Early-Phase Systems Engineering: A Retrospective Review and Benefits for Future Air Force Systems Acquisition”

December 2007

http://books.nap.edu/catalog.php?record_id=12065
Findings and Recommendations

■ Finding #1
Attention to a few critical systems engineering processes and functions particularly during preparation for Milestones A and B is essential to ensuring that Air Force acquisition programs deliver products on time and on budget.

■ Recommendation #1
Air Force leadership should require that Milestones A and B be treated as critical milestones in every acquisition program and that … the “Pre-Milestone A/B Checklist” … be used to judge successful completion.
Findings and Recommendations

■ Finding #2

Creating a robust SE process requires experienced SEs with domain knowledge

■ Recommendation #2

Assess career field needs and develop a program to address
Implementation Approach - 2

- Established Program Systems Engineer (PSE) shred under SPRDE
- Active engagement with SPRDE FIPT to influence DAU STM courses
 - Subject matter focus has been realigned
 - Provide additional emphasis on technology transition techniques and tools
- Provided 70+ SMEs to support competency assessments
- “Science, Mathematics, & Research for Transformation” (SMART) –funded by OSD; managed by NPS and ASEE
 - Akin to an undergraduate co-op program
 - Also used to provide opportunities for graduate students
 - Trying to change to automatic hire after award of degree rather than having to compete
Update Apr 01 S&E Strategic Plan

Current & Future Requirements	Goal Areas
Recruitment and retention initiatives | Math
Education and training | Acquisition
Individual growth paths | Test
Awards and recognition | Sustainment

NRC STEM Study (kicked off Aug 08; 15-month duration)
- Determine STEM needs of 26 functionals
- Fold recommended implementation strategy into S&E Strategic Plan update

RAND S&E Study (SAF/AQXD initiated)
- Estimating changes in S&E skills for emerging technical needs
- Two time horizons: near term (5 years), mid-term (10-15+ years)
Findings and Recommendations

■ Finding #3

Government, FFRDCs, and industry all have important roles throughout the life cycle

■ Recommendation #3

Pre-A decisions should be supported by rigorous SE processes and analyses involving teams of acquirers, users, and industry
Implementation Approach – 3
Continuous Capability Planning

- Informed Time-Phased Requirements Development (ITPRD)
 - Identify sponsoring MAJCOM personnel for collaborative requirements development
 - Insert acquisition (AFMC/AFSPC/AFRL) personnel into pre-MS/KDP-A/B process far enough in advance of the HPT to absorb context of program, execute SE processes, and affect content of KPP/KSAs and requirements that go into AoA planning and ICD/CDD/etc.

- Life Cycle Risk Management
 - Comprehensive definition of risk and risk management; should begin at the earliest stages of capability/program planning (pre-MS/KDP-A capability planning effects), and continue throughout the total life cycle of the program

- Modeling, Simulation, and Analysis
Implementation Approach – 3
Life Cycle Management

■ High-Confidence Criteria
 ■ Strategy should document multiple, viable trade space options for cost, schedule, capability-based performance requirements and technology
 ■ Strategy should support proper phasing/synchronization of requirements with on- and off-ramps
 ■ Requirements prioritized and properly time phased (cost/schedule)
 ■ Pre-M/S-B Risk Management plans complete, accurate, current and being followed
Technology Development and Transition Strategy

- Extends the scope of quantitative criteria beyond TRLs
- Includes broader processes and cross-command forums to improve the rigor of early SE and contribute to “doable” requirements
- Increases the probability that highest-priority shortfalls/gaps are addressed
- Results in closer alignment between technology investments and system / capability needs

Transition Stage-Gating

- Provides a CONOPS for total technology insertion into the Acquisition & Sustainment Plan
AF Tech Transition Office (TTO) continues support to JCTD, QRF, TTI and other Tech Transition programs.

Tech Transition Program Initiative funded in FY10 POM ($10M/yr)
- Hardware prototyping
- Bridge funding from Tech Demo to Program POM
- Enterprise interface management / configuration control

Developing R&D Strategic Framework to coordinate AF policy, programs and processes to transition technology through 6.1-6.8 to new program of record or change to existing program.
Findings and Recommendations

Finding #4

The organic development planning function that applied pre-A SE to a number of successful programs was allowed to lapse

Recommendation #4

A development planning function should be established in the military departments to coordinate the concept development and refinement phase of all acquisition programs to ensure that the capabilities ... as a whole are considered and that unifying strategies such as ... interoperability are addressed.
Secured FY10 POM funding ($37M/yr) for new PE for Requirements Analysis & Maturation (RAM) (“Development Planning”)

- Concept Development
- Requirements Analysis Support

- Establishing DP/RAM governance structure; single point of entry for MAJCOM DP requests

- Early SE Guide to be published 4Q CY08

- Institutionalize CCTD and ConSEP in policy
Implementation Approach – 4
RD&E Investment Framework

Transition Assistance -- filling the “Valley of Death”

Corporate S&T

Basic Research

Applied Research

Tech Demo

Rapid Development & Fielding

Programs of Record

Pre-Acquisition Systems Engineering

Technology Development

System Integration

Production

I n t e g r i t y - S e r v i c e - E x c e l l e n c e
Implementation Approach - 1

- Checklist identifies 20 items in 7 principal areas
- Coverage for 16 of 20 exists in current policy and guidance
- Conducted informal order-of-magnitude assessment of current compliance across practitioner community
- In process of identifying process owners and key linkages for each item needing action
Checklist – Concept Development

<table>
<thead>
<tr>
<th></th>
<th>CURRENT PROCESS</th>
<th>SUPPORTING DOCUMENTATION</th>
<th>PROCESS OWNER(S)</th>
<th>OPR(S)</th>
<th>KEY LINKAGE(S)</th>
</tr>
</thead>
</table>
| 1 | Have at least two alternative concepts been evaluated? | AoA policy in AFI 10-601 | • PASEP (pre-AoA)
• ASC process (post-AoA)
• Early SE Guide | • OAS, A2/5
• AQR, AFMC/EN | Center XRs | • AoA and DP
• ESE guide
• SoS stds / practices |
| 2 | Can an initial capability be achieved within ~5 years from MS/KDP B? If not, can critical subsystems (or a key subset) be demonstrated within that timeframe? | New MAIS programs now require IOC within 5 years of MS A, per FY08 NDAA Section 811. No rqmt for non-MAIS programs. | • Concept SEP (ConSEP)
• Transition Plan
• 5000.2 update (PDR ahead of MS B) | A2/5 for DP/RAM and attestation process | Center XRs | • DT&E initiative
• Risk Assessment
• Cost estimating
• Other enduring/ std processes
• CCP Guide |
| 3 | Will high-risk new technologies have been matured prior to MS/KDP B? If not, is the risk mitigation plan adequate? | 10 USC 2366a requires TRL ~6 (defined by AF Policy Memo) at MS B | • Transition Plan
• ConSEP
• Competition & prototyping (Young memo, 5000.2 update) | • A2/5
• DP efforts and process leading to acq strategies | Center XRs with AFRL | • TD initiatives (RI3, TDTS)
• CCP Guide |
| 4 | Have external interface complexities (incl. dependencies on other programs) been identified and minimized? Is there a plan to mitigate risks? | Part of JCIDS process; SoS SE guide | • Concept Characterization & Technical Description (CCTD)
• CCP process for developing options
• SoS engr (in Early SE Guide) | • AQR Guidance Memo mandates CCTD
• A2/5 – process for developing option sets
• AQR, AFMC/EN | Center XRs | • Early SE Guide
• CCP Guide
• AFMC/EN SoS eng practices
• All enduring processes incl analysis
• TD (RI3) |
Checklist – KPPs and CONOPS

<table>
<thead>
<tr>
<th></th>
<th>CURRENT PROCESS</th>
<th>SUPPORTING DOCUMENTATION</th>
<th>PROCESS OWNER(S)</th>
<th>OPR(S)</th>
<th>KEY LINKAGE(S)</th>
</tr>
</thead>
</table>
| 5 | At MS/KDP A, have KPPs been identified in clear, comprehensive, concise, understandable terms? | AFI 10-601 (JCIDS implementation) (at early stages, MOEs are more appropriate than solution-focused KPPs) | • ConSEP
• CCTD
• I-CDD (to support system rqmts refinement and PDR prior to MS B) | • AFMC/CC attestation point
• DP/RAM process | Center XRs
• ITPRD initiative
• Attestation process
• SE activities
• LCM |
| 6 | At MS/KDP B, are major system-level requirements (including all KPPs) sufficiently well defined to provide a stable basis for system development? | AFI 10-601 (JCIDS implementation) (at early stages, MOEs are more appropriate than solution-focused KPPs) | • ConSEP
• CCTD
• CDD | AFMC/CC atestation process | SPM and center XRs
• DT&E initiative
• All enduring processes including analysis
• LCM |
| 7 | Has a CONOPS been developed showing that system operation can handle expected throughput and meet response time requirements? | | • ConSEP
• CCTD
• I-CDD | A2/5 DP/RAM process | SPM and center XRs
• Analysis framework
• SoS practices and standards
• Early SE – all enduring processes |
Checklist – Cost & Schedule, Performance Assessment

COST & SCHEDULE SCOPING

<table>
<thead>
<tr>
<th></th>
<th>Question</th>
<th>Process/Phase</th>
<th>Documents/Methodology</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Are major cost and schedule drivers and risks explicitly identified, and is there a plan to track and reduce uncertainty?</td>
<td>Pre-A, Pre-B, SEP, RMP</td>
<td>JROC process per JROCM 06-261, ConSEP, Transition Plan, A2/5 for DP/RAM, RMP, RPX, Acq strategy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Risk process (ACE-AFMC/EN), Risk and integrated assessments, SPM and center XRs depending on phase, Risk process, Cost estimating methodology</td>
</tr>
</tbody>
</table>

PERFORMANCE ASSESSMENT

<table>
<thead>
<tr>
<th></th>
<th>Question</th>
<th>Process/Phase</th>
<th>Documents/Methodology</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Have principal stakeholders accepted the confidence level (risk assessment) associated with cost estimates?</td>
<td>CCTD, SEP, RMP</td>
<td>Cost Estimating policy & guidance (POE, ICE, etc.), Risk process, SPM and center XRs depending on effort/phase, Risk process, Cost estimating methodology</td>
</tr>
<tr>
<td>10</td>
<td>Are models and simulations adequate and appropriate to validate the selected concept and CONOPS against the KPPs?</td>
<td>Operational Context rather than “CONOPS” per se, MOEs at earliest “checkpoints”, ConSEP, CCTD, SEP</td>
<td>A2/5 (DP); M&S owner as enabler, A2/5 from attestation perspective, SPM and/or center XRs depending on effort/phase; also need M&S owner, DT&E initiative, Analysis Team products (M&S activity)</td>
</tr>
<tr>
<td>11</td>
<td>At MS/KDP B, do the requirements consider likely future mission growth over the life cycle?</td>
<td>SE/SEP guidance (Address in updates), SEP, Transition Plan</td>
<td>AFMC/CC attestation, DP/RAM, SE, SPM with insights from earlier XR efforts, ICD and I-CDD (validation)</td>
</tr>
</tbody>
</table>
Checklist – Architecture, Risk

<table>
<thead>
<tr>
<th>CURRENT PROCESS</th>
<th>SUPPORTING DOCUMENTATION</th>
<th>PROCESS OWNER(S)</th>
<th>OPR(S)</th>
<th>KEY LINKAGE(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 Has the system been partitioned to define segments that can be independently developed and tested?</td>
<td>Architecture views required per JCIDS • ConSEP • CCTD • SEP</td>
<td>SE and DP/RAM</td>
<td>Center XRs and XPM depending on effort/phase</td>
<td>• DT&E initiative • SoS SE • ICD and I-CDD to validate approach • CCP Guide</td>
</tr>
<tr>
<td>13 By MS/KDP A, is there a plan to have information exchange protocols in place by MS/KDP B?</td>
<td>Architecture views required per JCIDS (OV-3, OV-5 and SV-6 should address) • ConSEP • CCTD • SEP</td>
<td>• A2/5 for DP/RAM process • SE process including SoS</td>
<td>Center XRs and SPM</td>
<td>• SoS practices and standards • early SE • DP/RAM</td>
</tr>
<tr>
<td>14 At MS/KDP B, is the program plan structured to ensure that the contractor addresses rqmts decomposition / allocation to hardware, software, and human elements sufficiently early in development?</td>
<td>• SE guidance in MS B RFP • WBS</td>
<td>• Acquisition Strategy • IMP/IMS</td>
<td>• SE • AFMC/CC attestation</td>
<td>SPM · Attestation</td>
</tr>
</tbody>
</table>
Checklist – Risk Assessment, Program Implementation

Risk Assessment

<table>
<thead>
<tr>
<th>Current Process</th>
<th>Supporting Documentation</th>
<th>Process Owner(S)</th>
<th>OPR(S)</th>
<th>Key Linkage(S)</th>
</tr>
</thead>
</table>
| 15 | Are all key risk drivers (including but not limited to critical technologies) identified? | 10-6 series? | • ConSEP
• CCTD
• SEP
• TDTS | SoS engr processes; risk process (must begin early) | Center XRs and SPMs depending on effort/phase | • TD initiatives
• Linkage between risk, SE and SoS eng, Cost |

Program Implementation

<table>
<thead>
<tr>
<th>Current Process</th>
<th>Supporting Documentation</th>
<th>Process Owner(S)</th>
<th>OPR(S)</th>
<th>Key Linkage(S)</th>
</tr>
</thead>
</table>
| 16 | Does the program implementation plan account for necessary and sufficient # and skill levels of organic (military and civilian), FFRDC, and support contractor personnel to manage the program? | • SEP should be a resource-constrained plan
• LCMP should address. | • Acq strategy
• Transition Plan | A1 – should be accounted for in Mission Assignment process as well as during transition to a SPO – all functionals (including A2/5 for DP) need to be included in the assessment process | SPO Cadre and SPM (Center XR, EN, other functionals as needed) | In work (HCC definitions) |
| 17 | At MS/KDP A, is there a plan in place that identifies all necessary activities and resources to reach MS/KDP B? | LCMP | Early SE Guide | • A2/5 for DP/RAM
• SE and SoS processes | Center XRs and SPMs w/resource allocation process | • SoS
• SE
• DP/RAM resource allocation
• All enduring processes |
Checklist – Program Implementation

<table>
<thead>
<tr>
<th></th>
<th>CURRENT PROCESS</th>
<th>SUPPORTING DOCUMENTATION</th>
<th>PROCESS OWNER(S)</th>
<th>OPR(S)</th>
<th>KEY LINKAGE(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Is there a top-level system integration and test plan?</td>
<td>SEP and TEMP</td>
<td>A2/5 (DP & attestation), PM, SE, SoS</td>
<td>TE Contractor</td>
<td>DT&E and TD initiatives, SoS practices</td>
</tr>
<tr>
<td>19</td>
<td>At MS/KDP B, are the necessary and sufficient program management and systems engineering management personnel in place? Have they been empowered to tailor processes and enforce requirements stability through IOC?</td>
<td>Usually based on PM and CE judgment and then articulated in SEP and LCMP. They are empowered to tailor processes. EMA instituted to add/improve discipline for requirements stability.</td>
<td>A1 (Mission Assignment Process)</td>
<td>SPO Cadre and SPM (Center XR, EN, other functionals as needed)</td>
<td>In work (HCC definitions)</td>
</tr>
<tr>
<td>20</td>
<td>Has the government attempted to align the duration of the program manager’s assignment with key milestones and deliverables?</td>
<td>New policy memo forthcoming</td>
<td>Mission assignment process with senior officer moves</td>
<td>OSD</td>
<td>In work (OSD)</td>
</tr>
</tbody>
</table>
Prototyping and Early SE

- Basic tenets of prototyping can help a program-to-be directly address 10 of the 20 checklist items -- at least one in each of the 7 areas
- A well-crafted prototyping plan can impact most if not all other items

Prototyping and Early SE Checklist “Box Score”

<table>
<thead>
<tr>
<th>Area</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept Development</td>
<td>2/4</td>
</tr>
<tr>
<td>Architecture Development</td>
<td>2/3</td>
</tr>
<tr>
<td>KPPs and CONOPS</td>
<td>1/3</td>
</tr>
<tr>
<td>Risk Assessment</td>
<td>1/1</td>
</tr>
<tr>
<td>Cost and Schedule Scoping</td>
<td>2/2</td>
</tr>
<tr>
<td>Program Implementation Strategy</td>
<td>1/5</td>
</tr>
<tr>
<td>Performance Assessment</td>
<td>1/2</td>
</tr>
</tbody>
</table>

U.S. Air Force
Concept SE Process

Authorization to Proceed

Trade Space Characterization

Candidate Solution Set Selection

Requirements Exploration & Synthesis

Trade Space & Exploratory Analysis

Capability Decomposition / Analysis

Initial Concept Review

Architecture Characterization

System Characterization

Key Subsystem Characterization

Cost Analysis & Verification

Acquisition Timeline Analysis & Verification

Rqmts Verification/ Capability Assessment

CCTD

Release Approval

Final Concept Review

Concept Characterization Review

Solution Set Technical Analysis

Programmatic Analysis

Integrity - Service - Excellence
Concept Characterization and Technical Description (CCTD)

for

Concept Name

DATE

Prepared by:

Name of Source (e.g., Concept Development Organization, AFRL, Corporation, etc.)

TABLE OF CONTENTS

1. Mission / Capability Need Statement / CONOPS
2. Concept Overview
3. Trade Space Definition / Characterization
 3.1 Top-Level Architecture
 3.2 Principal Interfaces
 3.3 Operating Regime
 3.4 Key System Parameters
4. Studies, Analyses, Experiments
 4.1 Parametric Studies (e.g., weight, power, cooling, throughput)
 4.2 Analyses (e.g., HSI, considerations, supportability concepts)
 4.3 Experiments
 4.4 Conclusions
5. Concept Characterization / Design
 5.1 Common Analysis Assumptions
 5.2 Operating Regime
 5.3 Interface / Interoperability / System-of-Systems Approach
 5.4 Critical Subsystem Design and Sizing
 5.5 Supportability / Sustainment Features
 5.6 Configuration Summary
 5.7 Analysis Results
 5.8 Concept Design Conclusions (Capability Performance Description)
6. Program Characterization
 6.1 Critical Technologies
 6.2 Technology Maturation Approach
 6.3 Test & Evaluation / Verification & Validation Approach
 6.4 Prototyping Approach
 6.5 Manufacturing / Productivity Approach
 6.6 Sustainment / Supportability Approach
 6.7 Schedule Assumptions
 6.8 Cost Analysis Assumptions
 6.9 Cost Estimates
 6.10 Risk Assessment
7. Conclusion
8. Recommendations (if applicable)
<table>
<thead>
<tr>
<th>Type</th>
<th>Title</th>
<th>Counts/ Versions</th>
<th>Owner</th>
<th>Date Modified</th>
<th>Email This</th>
<th>Reserved</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Briefings presented</td>
<td>Briefings presented</td>
<td>=0, □=5</td>
<td></td>
<td>6/25/2008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draft Checklists</td>
<td>Draft Checklists</td>
<td>=0, □=6</td>
<td></td>
<td>6/26/2008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draft Policy</td>
<td>Draft Policy</td>
<td>=0, □=1</td>
<td></td>
<td>6/25/2008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draft process briefs</td>
<td>Draft process briefs</td>
<td>=0, □=1</td>
<td></td>
<td>6/25/2008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draft RAM Strategic Plan</td>
<td>Draft RAM Strategic Plan</td>
<td>=0, □=1</td>
<td></td>
<td>9/18/2008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prioritization</td>
<td>Prioritization</td>
<td>=2, □=0</td>
<td></td>
<td>7/24/2008</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>