Systems Engineering to Ensure Aircraft Airworthiness

21 Oct 08

Jim Miller
Director of Engineering
727 ASW/EN
Phone: (405) 736-4101
james.c.miller@tinker.af.mil
Sustainment Environment

727th Aircraft Sustainment Wing

Col. Paul Waugh
Commander

Mr. Bob Valdez
Deputy Director

Mr. James Miller
Director of Engineering

PROVIDING EFFECTIVE & EFFICIENT WEAPON SYSTEM SUPPORT
327th ASW Responsibilities

- 1503 Aircraft Mgd (357 Inactive)
- 28,000+ Engines Mgd 51 types
- 1382 Air Traffic Control & Landing Sys Mgd
- 62 Weapon Systems 33 ATCALS
- 153 Program Depot Maintenance Completed
- FY07 $3.3B Obligation Authority
- FY07 24 Commands
- $14.8B Contracts Managed In FY07
- 212 USAF Bases 41 FMS Nations
- 327 ASW

- 327th ASW Responsibilities

- FY07
- 153 Program
- Depot Maintenance Completed

- FY07
- $3.3B Obligation Authority

- $14.8B Contracts Managed In FY07

- 212 USAF Bases
- 41 FMS Nations

- 327 ASW
- 327th ASW Responsibilities

- 327th ASW

So What is the Airworthiness Problem?

- Airworthiness is a requirement for all aircraft, whether FAA or DoD
- Tinker AFB manages 20-plus different types of CDA
 - Aircraft use a mixture of FAA and Air Force criteria and methods of compliance to verify airworthiness when modifying the aircraft
- Modifying a CDA by a process that combines both FAA Certification and Air Force Certification could result in a hybrid safety standard.
 - Such a standard is unproven by either the FAA or the DoD, and could therefore put the aircraft and crew at risk
- No planning and implementation process to ensure comprehensive and complete airworthiness of all designs and parts
- No tracking the organization’s progress regarding airworthiness for upper management in a fleet of over 400 aircraft throughout the entire lifecycle of the CDA
Airworthiness Project Overview

• Problem Statement
 – Current practices do not ensure 100% of CDA modification design/parts are correctly certified for airworthiness.

• Project Definition and Scope
 – 727 ACSG aircraft (CDA) sustained by Boeing
 – Airworthiness certification to cover various (FAA & Military) compliance methods
 – Review and “Walk” the entire process in both orgs
 – Define Responsibility Accountability Authority (RAA) for any process decision pts
 – Ensure certification means supports lifecycle sustainment
 – Must include metrics for upper management visibility
Airworthiness certification requirements and RAA’s not well defined by FAA, Government or Contractor

No comprehensive airworthiness certification plan

No control mechanisms in place to measure airworthiness
GAPS

• Government does not clearly state airworthiness requirement to contractors
• Responsibility, Accountability and Authority (RAA) not well defined by FAA, Government or Contractor
• No comprehensive airworthiness certification plan
 – Plan not done early in modification process
 – Plan not coordinated between Government, FAA and Contractor
• No control mechanisms in place to measure airworthiness
Gap #1: Requirements Not Clear

- Airworthiness very briefly mentioned
- Rarely states what type airworthiness certification required
- Rarely addresses parts
- Rarely addresses life cycle cost/sustainment aspects
- Does not address who/when airworthiness decisions will be made
- Examples....
Airworthiness SOW Language Examples

- “The contractor shall obtain FAA approval for this modification…”
- “Any equipment installed as part of this modification not covered with full FAA certification must be…”
- “Obtain FAA approval for engineering drawings…”
- “This SOW directs the contractor to provide an FAA approved modification…”
- “Contractor shall obtain FAA approval where applicable…”
- “Contractor shall obtain FAA where practical…”
Gap #2: RAA Not Well Defined

- Responsibility, Accountability and Authority (RAA) not well defined by FAA, Government or Contractor
- Neither Gov’t nor Contractor have policy in place defining who makes airworthiness decisions throughout process
 - Design: Not clear who decides which of design cert will be followed
 - Parts: Decisions made at various levels, part “pedigree” often assumed, or not given consideration to life cycle cost
GAP #3: No Certification Plan

- MIL-HDBK-516B describes criteria, but not implementation and planning
- Currently no certification plan required for modification
- No plan provided up-front regarding all designs and all parts
- Government usually does not find out until end what the certification is
GAP #4: No Control Measures

- How much FAA certified and how much Military certified?
- Which design certification methods used?
- What are the pedigrees of all the parts?
- Does the actual delivered modification match the planned?
- How can you keep your SPM and Chief Engineer informed of this important topic before the signing of the DD Form 250?
So What Are Doing About It?

- Instigated a step-by-step Operating Instruction to implement air worthiness management throughout the organization
- Implemented tangible approach that is:
 - Aimed at the working level
 - Applies to both contractor and Air Force
 - Applicable throughout entire organization
 - Accounts for status/progress through metrics
 - Always starts with requirements
4 Solution Recommendations

- Improve SOW wording (Requirements)
- Complete airworthiness approach/certification plan for both design and parts early
- Clearly define decision making authority for each airworthiness condition
- Establish control measures to verify 100% certification of designs and parts and keep upper management informed
Sol’n #1: Improved SOW Words

- OI contains decision tree which will drive appropriate level of airworthiness requirements
- Airworthiness certification requirements expanded and clarified to contractor
- OI contains “cut-and-paste” template SOW language for modification contracts
- Templates available for:
 - FAA Airworthiness Certification
 - Non-FAA Airworthiness Certification
 - Airworthiness Sustainment Requirements (Parts)
 - Airworthiness Documentation
Sol’n #2: Airworthiness Cert. Plan

• The Airworthiness Certification Plan Must:
 – Be delivered NLT System Requirements Review
 – Cover 100% of planned design
 – Cover 100% of planned parts
 • Instructions for Continued Airworthiness (ICA)
 • Sustainment plan to ensure availability of airworthy parts throughout life cycle
 – For all non-FAA parts or design, must have SPM or Chief Engineer approval
 – Account for life cycle maintenance
 – Deliver applicable airworthiness certification documentation
 – Include specific control measures (metrics) to track health
Sol’n #3: Decisions at Right Level

• Clearly define decision making authority for each airworthiness condition
 • OI contains detailed matrix for each certification method, part certification and documentation requirement
 • OI clearly defines for each condition what level has approval authority
 – Chief Engineer or Single Manager
 – Engineering Flight Director
 – Lead engineer or program manager
 • Boeing make similar changes to their internal processes
Sol’n Gap #4: Developed Metrics

- Establish control measures to track the following:
 - Design/part certification method
 - Design certification breakout
 - Part certification breakout

- Start tracking at beginning and continue through delivery
 - Brief to Upper Management Quarterly
 - Metrics must have ability to roll-up
 - For a collection of modifications
 - For entire aircraft
 - For entire organization
Design/Part Certification Method

DESIGN
- FAA: 40%
- Military: 60%

PARTS
- FAA: 15%
- Military: 85%

NOTIONAL DATA
- FAA represents fully commercial compliant
- Military is anything but fully commercial compliant
Design Certification Breakout

Total Mods

NOTIONAL DATA
Part Certification Breakout

[Bar chart showing NOTIONAL DATA for Total Parts distribution across different categories: FAA Appr Part, Replaced by 155 station, TCSTC Part, FAA Distributor, AIC Unique Part, MIl Qual Part, COC, TBD for SRR]
New Process to Ensure Airworthiness

Fixed Gaps

Strengthened SOW language, defined intent and established clear RAA

Ensured cert approach in place before SRR

Implemented control measures (metrics) to verify both designs and parts

- **Input/Output**
- **Task**
- **Decision**
- **Connector**
- **Record**
- **Control Point**
Summary

- Focuses on airworthiness certification planning and implementation rather than establishment of airworthiness certification criteria
- Provides a standardized proactive airworthiness certification management process consistent with Air Force policy
- Provides a process to ensure airworthiness certification requirements are an integral part of program management—contractor and DoD
- Ensures “the right” airworthiness certification requirements, for both design and parts, are identified, implemented, monitored, controlled, and reported.
Parking Lot Gaps

<table>
<thead>
<tr>
<th>Gap</th>
<th>727 ACSG</th>
<th>Boeing</th>
<th>ASC/FAA</th>
</tr>
</thead>
<tbody>
<tr>
<td>(G1) MACC’s not being prepared for each modification</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(G1a) Cert plans that are generated by contractor are not coordinated with Government</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(G2) No approach in 727 ACSG for military certification path</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(G2a) Contractor processes do not support military certification path or have firm understanding of military airworthiness requirements (i.e. AFPD 62-6, AFPD 62-4, AFPD 62-5, MIL-HDBK 516B)</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(G3) User and contractual requirements provide insufficient details to ensure airworthiness certification for 100% of designs/parts</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(G3a) Definitive definition of correct level of certification has not been provided by FAA</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(G3b) Definitive definition of correct level of certification has not been provided by ASC/EN</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(G3c) Contractor processes do not support different methods of airworthiness certification or incorporate FAA order 8110</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(G4) Responsibility, Accountability, Authority (RAA) is not defined or documented on Government or contractor side resulting in Program Managers, Equipment Specialists making airworthiness decisions on designs/parts</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(G4a) Contractor does not have defined and documented RAA’s for airworthiness decisions</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(G4b) FAA has not defined and documented RAA’s for airworthiness decisions</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(G4c) ASC/EN has not defined and documented RAA’s what airworthiness decisions should be made at what level for the different methods of certification</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(G5) Airworthiness certification for entire provisions only installation not attained</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(G6) Methods of maintaining continued airworthiness not fully understood</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(G6b) Sustainment and modification teams on ASC/EN team not integrated</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(G6a) Sustainment and modification teams on contractor team not integrated</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(G7) Contract requirements impact on existing airworthiness decisions not understood</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(G8) Sustainment (parts or services procurement and repair) not necessarily in accord with design/certification basis</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(G8a) Contractor sustainment teams are not involved with new mod development</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(G9) FAA certification of COTS do not play well together</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(G9a) Air Force customer mission requirements and airworthiness requirements do not support each other</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RCM Template

<table>
<thead>
<tr>
<th>Event</th>
<th>Requirement</th>
<th>Step 1</th>
<th>Step 2</th>
<th>Step 3</th>
<th>Step 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Effort kickoff or major review/change</td>
<td>• Identify scope of modification, including functions/ capabilities affected/incorporated, major hardware elements and LRUs, areas of a/c affected, and system or systems involved.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 1 Overall Certification | • R1 – Prepare an integrated airworthiness certification plan to accomplish comprehensive design certification.
• R2 – Provide Instructions for Continued Airworthiness to permit aircraft sustainment in accordance with certified design
• R22 – Provide control measures (metrics) to track design/part certification method, part certification breakout and design certification breakout on or before SRR with updates to metrics throughout modification program
• R23 – Provide delivery dates for metrics and supporting data in program integrated master schedule. | Step 1 | Step 2 | | |
| 2 Are there portions of the modification which can/should be fully FAA certified? That is elements (A) which are:
• Similar/identical to widespread commercial requirements
• Similar to private initiatives in effects on airworthiness, flight characteristics, operational characteristics, or pilot technique
• Are similar to private initiatives in aircraft usage or implementation of mission or interior accommodations
• Can meet all applicable FAA regulations and the same requirements for a commercial modification. | • R3 – Obtain FAA approval/certification for (A) equipment/ capability implementation in accordance with requirements applicable to aircraft operating under FAR Part (91, 121, etc. as applicable). | Step 3 | | Step 5 |
| 3 Are there adaptations or alterations of commercial aviation equipment required to suit military or mission requirements? | • R4 – Modify (E) to provide capabilities (Z)
• R5 – Obtain FAA certification for (E), as modified | Step 3a | | |
| 3 Will existing STCs (S) be partially changed as a result of this modification? | • R18 – Obtain FAA approval of changes to (S)
 Gov’t note: Military a/c primarily don’t maintain the airworthiness certificate (from the strict FAA stance). Recommend that a technical risk. | Step 3a | | |
RCM Template

### Event	Requirement
5 | **Are there elements of the modification which cannot be approved for carriage by the FAA (B)?**
 Examples include:
 - Hazardous materials or equipment
 - Equipment which cannot be demonstrated to be safe even when not operating

6 | **Will military qualified equipment (C) be needed/used in the modification?**
 - **R7** – Obtain FAA installation certification/approval for (C) using military qualification and operational data.
 - **R8** – Perform necessary analysis to support FAA certification/approval for (C)
 - **R9** – Perform additional testing required to support FAA certification/approval for (C)

7 | **Will the modification use/apply non-aviation commercial- or consumer-grade equipment**
 - **R10** – Perform safety analyses covering use and operation of (L)
 - **R11** – Obtain FAA certification/approval for (J)
 - **R 12** – Identify any equipment in (L) which is unsafe or hazardous when applied to this modification (H)

8 | **Is there hazardous commercial/consumer equipment?**
 - **R13** – Design enclosures and/or accommodations to control hazards posed by (H)
 - **R14** – Obtain FAA certification/approval for enclosures and/or accommodations for (H)

9 | **Is there doubt that sustainment parts and repairs can be readily obtained for FAA certified design, throughout the life of the modification?**
 - **R15** – Develop a sustainment plan to ensure availability of FAA parts repair capability throughout the life of the modification
 - **R16** – Develop a sustainment plan to ensure availability of FAA replacement parts throughout the life of the modification
 - **Gov’t note**: Requires a Logistics Support Analysis to determine right path FAA or not – don’t assume pure FAA is the right approach.

Step
- **Step 6**
- **Step 7**
- **Step 8**
- **Step 9**
- **Step 10**
RCM Template

<table>
<thead>
<tr>
<th>Event</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Are there elements (M) that will not be FAA certified?</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 11 | Are there elements B? | • R18 – Conduct analyses, tests, and demonstrations to qualify (B)
• R19 – Prepare and submit data to support certification of (B) for airworthiness, including operation in-flight | Step 12 | Step 12 |
| 12 | Are there elements K? | • R20 – Conduct analyses, tests, and demonstrations to demonstrate/develop safe installation and use of (K)
• R21 – Prepare and submit data to support certification or approval of (K) for installation and use | Step 13 | Step 13 |
| 13 | Military Certification | • R21 - Conduct necessary analyses, test, and demonstrations to support airworthiness and operations approval for (M) | |
RCM Template Key

- A Elements of modification which may receive full FAA certification/approval
- B Military only elements of the modification – those which cannot be approved for installation by FAA and require provisions only approval
- C Military qualified equipment for which FAA certification may be obtained
- E Commercial aviation equipment which must be altered or adapted to meet military requirements (subset of A)
- H Non aviation commercial or consumer equipment which is unsafe or poses hazards which cannot be mitigated (subset of L)
- J Non aviation commercial or consumer equipment which may be FAA certified (subset of L)
- K Non aviation commercial or consumer equipment which cannot be FAA certified or for which accommodations cannot be designed to permit certification (subset of L and possibly H)
- L Non aviation commercial or consumer equipment needed/used as part of modification
- M Elements requiring military airworthiness certification (Includes B and K)
- S Existing STCs modified in the course of the current modification
- Z Capabilities or features for military purposes which must be incorporated into commercial aviation equipment
Basic Systems Engineering Process

INPUTS

Requirements Analysis

Functional Analysis/Allocation

Design Synthesis

Requirements Loop

Verification Loop

Design Loop

OUTPUTS

Analysis & Control
Major Modification Programs

<table>
<thead>
<tr>
<th>Program Description</th>
<th>ACAT Category</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-10 AMP – ASC Lead (ACAT II)</td>
<td>$1.03B</td>
<td></td>
</tr>
<tr>
<td>KC-10 Dual 406 MHz ELT Upgrade (ACAT III)*</td>
<td>$2.4M</td>
<td></td>
</tr>
<tr>
<td>KC-10 Iridium Phone (ACAT III)*</td>
<td>$2.7M</td>
<td></td>
</tr>
<tr>
<td>KC-10 UHF SATCOM Antenna (ACAT III)*</td>
<td>$2.6M</td>
<td></td>
</tr>
<tr>
<td>VC-25 Forward Lower Lobe (FLL) Cooling (ACAT III)</td>
<td>$14.4M</td>
<td></td>
</tr>
<tr>
<td>VC-25 Presidential Data System (PDS) (ACAT III)*</td>
<td>$223.3M</td>
<td></td>
</tr>
<tr>
<td>VC-25 CNS/ATM (ACAT III)*</td>
<td>$41.8M</td>
<td></td>
</tr>
<tr>
<td>C-20 Gulfstream Test Vehicle (GTV) (ACAT III)*</td>
<td>$8.7M</td>
<td></td>
</tr>
<tr>
<td>E-9 Telemetry Sys Upgrade (ACAT III)*</td>
<td>$5.9M</td>
<td></td>
</tr>
<tr>
<td>E-4B Mod Block I (ACAT II)</td>
<td>$421.4M</td>
<td></td>
</tr>
<tr>
<td>E-4B 256 Kbps High Speed Data via INMARSAT (ACAT III)*</td>
<td>$8.4M</td>
<td></td>
</tr>
<tr>
<td>C-12 EFIS (ACAT III)</td>
<td>$77.7M</td>
<td></td>
</tr>
<tr>
<td>HFGCS Network Control Station – West (ACAT III)*</td>
<td>$23.2M</td>
<td></td>
</tr>
<tr>
<td>HFGCS AFSPC Test Range HF Modernization (ACAT III)*</td>
<td>$3.9M</td>
<td></td>
</tr>
<tr>
<td>HFGCS Network Optimization – Spiral II (ACAT III)*</td>
<td>$7.1M</td>
<td></td>
</tr>
<tr>
<td>HFGCS Navy Consolidation (ACAT III)*</td>
<td>$6.4M</td>
<td></td>
</tr>
<tr>
<td>HFGCS Audit Log Upgrade (ACAT III)*</td>
<td>$189K</td>
<td></td>
</tr>
</tbody>
</table>

*Program is fully funded