

Systems Engineering in the S&T Environment

Best Practices and Other Lessons Learned from the Air Force Research Laboratory

October 2008

- AFRL's SE Problem
- The TASE Study
- TASE Assessment Results Best Practices
- TASE Recommendations
- Conclusions

- Technology development and maturation are a contributing element to the acquisition process
- Recent acquisition "failures" have resulted in an increased DoD focus on systems engineering
- AFRL is also being asked to do more with fewer resources

So – why shouldn't AFRL apply systems engineering in its activities?

- Because…
 - "SE is acquisition oriented, and we do research"
 - "AFRL programs are small with limited budgets, and SE adds a resource burden"
 - "SE focuses on customers and requirements satisfaction, and research programs don't have either"
 - "Structured approaches like systems engineering will stifle creativity in research"

- AFRL commissioned the Transformational Activities in Systems Engineering (TASE) study in 2006
- 3 Phases
 - Assess AFRL's current SE state of practice: determine DoD/AF requirements; assess current SE policy, practices, and tools (2006)
 - Recommend improvements to AFRL's SE policy and practices (2007)
 - Implement and sustain an approved AFRL SE process (2008+)

- Assessment based on:
 - Review of DoD and AF SE guidance
 - Interviews with AFRL Advanced Technology Demonstration (ATD) and other high-priority program personnel (52 programs assessed)
- Facilitated by GD-AIS contractor team
 - 5 senior systems engineers
 - Former Director of the AF Center for Systems
 Engineering

- Intent of DoD guidance encourages use f SE in research activities
- SE to S& mel, but few SE was not foreign to AFRL programs used a full set ing processes The S&T environment to different"
- The S&T environm

 - Variable prog driveze
 "Soft" factors
 "Soft" factors
 (aka "desirements") "Soft"
 - (vs hierarchical) relationships
 - Astability in customer base

- AFRL use of the Integrated Product and Process Development (IPPD) process
 - High Energy Laser on a Large Tactical Platform (HELLTP)
 - Next Generation Unmanned Aerial System
 - Multiple small programs
- SE Successes
 - Increased understanding of "customer" needs
 - Better focus on which technology areas to pursue
 - Increased potential for successful transition

- The Advanced Tactical Directed Energy System (ATADS) ATD used SE processes to successfully meet its program objectives
 - Result was up to an order of magnitude reduction in weight and cost from the existing airborne infrared countermeasures system with increased performance
- SE Successes:
 - Lab-led requirements development and management including IPT with user, PO, and contractor resulted in responsive but controlled requirements that balanced user needs with technical realities
 - Continuous risk management successfully responded to technology and program issues
 - Model-based decision analysis improved both requirements and design choices
 - Strong contractor SE processes, monitored by Lab managers, ensured matured technologies and integration met Lab needs

- Requirements Development and Decision Analysis
 - Formal IPPD process tailored to AFRL's environment and "Standardized" between Directorates
 - Strong Integrated Product Teams (IPTs)
- Risk Management
 - Continuous process involving AFRL and contractor
- AFRL/Contractor Relationship
 - Strong contractor SE with AFRL understanding and oversight
- Senior Leadership Support
 - Designated Chief Engineers and SE Branches

AFRL S&T SE Best Practice: IPPD Process

Transition Focused:

- Measurement-based methods
- Balanced tech trades/options
- Quantify desirability & risk

GENERAL DYNAMICS Advanced Information Systems

GENERAL DYNAMICS Advanced Information Systems

TASE Recommendation: Attack the Problem on 2 Fronts

- Cultural Change:
 - Build upon current SE Best Practices in AFRL
 - Implement a tailored, consistent, and complete SE framework that is a part of everyday operations (not a "burden")
 - Provide training on fundamental SE practices tailored to the research environment
 - Champion the S&T SE framework and supporting organization at the highest level of leadership

TASE Recommendation: Attack the Problem on 2 Fronts

- Cultural Change and
- Process Improvement:
 - Institute strong requirements development and decision analysis processes
 - Employ continuous technical management processes
 - Ensure AFRL technology program managers understand and have visibility into contract SE
 - Reduce program risk:
 - Foster customer intimacy, recognizing customer changes as a key factor in transition risk
 - Investigate technology alternatives early in the program

- AFRL has discovered that Systems Engineering is a good idea for S&T work
- AFRL has learned that implementing SE processes must be attacked on 2 fronts: cultural change and process improvement
- AFRL is implementing process and culture improvement efforts base on Best Practices

- AFRL POCs:
 - Dr. Ken Barker (Deputy Director for Program Management and Systems Engineering) <u>kenneth.barker@wpafb.af.mil</u>
 - Mr. Bill Nolte (Assistant to Dr. Barker for SE) william.nolte@wpafb.af.mil
- General Dynamics POC:
 - Mr. Bill Doyle, PMP (TASE Project Lead) william.doyle@gd-ais.com (719-641-3758)