Rapid Prototyping: Leapfrogging into Military Utility

Mr. Randy Walden
Air Force Rapid Capabilities Office (SAF/RCO)

9th Annual NDIA Science & Engineering Technology Conference
16 April 2008
Rapid Prototyping Needed

- Asymmetric threat has a very short timeline for change
 - COTS timeline available to threats
 - WWW used by threat
- DoD Acquisition has relatively long timeline
 - Limited access to COTS
 - Budget process is multi-year
- Complex systems stress definition of requirements/architecture
 - Requirement trade-offs delay system
 - Only as fast as slowest element
SAF/RCO Rapid Prototyping

Objectives

- Rapidly develop new capabilities to counter the increasing pace of threat evolution
- Improve acquisition process; facilitate faster transition of S&T to warfighter
- Realistic definition of requirements & architectures for complex problems; prototype to innovate

Enablers

- Mindset: acceptance of 80% solution
- Team: leadership support, warfighter involvement, “A-team” executing
- Investments for the future: open architectures, etc.
- Experience: practice to improve
“Rapid Prototyping” in Commercial Industry

A tool for rapid design & manufacturing …
A way to rapidly get products to market …
A way to innovate …

Not a new idea; approaches well established in commercial industry
Outline

- Motivation / Objectives
- Air Force Rapid Capabilities Office
- Rapid Prototyping
 - Rapid capability development examples
 - Enablers to rapid development
 - Prototyping to innovate
- Summary
Air Force Rapid Capabilities Office

- Established April 2003

- Mission: Expedite development and fielding of select DoD systems
 - Leveraging defense wide technology development efforts and existing operational capabilities

- Reports directly to Board of Directors
 - SecAF, CSAF, SAF/AQ, and USD(AT&L) chairs
 - Responds to Combat Air Force (CAF) and Combatant Command (COCOM) requirements

- Rapid Prototyping Example: National Capital Region (NCR) IADS
 - Enhanced Regional Situational Awareness (ERSA)
 - Norwegian Advanced SAM System (NASAMS)
National Capital Region Airspace

ADIZ – Air Defense Identification Zone
FRZ – Flight-Restricted Zone
IAD – Dulles International Airport
DCA – Reagan National Airport
ADW – Andrews Air Force Base
National Capital Region Airspace

1300 beacon tracks within ADIZ for one hour time period

ADIZ – Air Defense Identification Zone
FRZ – Flight-Restricted Zone
IAD – Dulles International Airport
DCA – Reagan National Airport
ADW – Andrews Air Force Base
RCO Rapid Developments

Enhanced Regional Situational Awareness (ERSA)

- Integrated air defense system for National Capital Region (NCR) in 2 years
- Operational for Jan 2005 Presidential Inauguration
- Developed and Fielded
 - Tower Mounted Radars
 - Aircraft ID
 - Visual Warning

Norwegian Advanced Surface to Air Missile System (NASAMS)

- Developed & integrated system into NCR IADS
- 9 months from Chairman JCS tasking to IOC
Rapid Prototyping
Visual Warning System (VWS)

Visual Warning System developed by rapidly integrating COTS to create a new capability
Visual Warning System (VWS)

- Provide visual warning to errant pilots entering NCR airspace
- Eye safe system at aperture and beyond
- Precision pointing at single aircraft
- Special Flight Advisory has been published on meaning of lights
- Operational on 21 May 2005

• Warning Sequence with translucent covers on

• Nighttime aircraft view from 3 nm, 28 Jan 05
AIR SAFETY

Small Plane Enters Restricted Space
2nd Incident in a Week Prompts Calls to Refine Evacuation Process at Capitol

By Mary Beth Sheridan
Washington Post Staff Writer
Thursday, March 13, 2008; Page B06

A small plane penetrated restricted air space and flew within six miles of the U.S. Capitol yesterday before being intercepted without incident, officials said.

When air-traffic controllers couldn't reach the pilot by radio, military personnel on the ground aimed red and green warning lights at the cockpit, said Maj. Brian Martin, a spokesman for the North American Aerospace Defense Command, or NORAD. That prompted the pilot to veer west, Martin said.

Two F-16 jets from Andrews Air Force Base and a Coast Guard helicopter escorted the plane to Leesburg airport, where the pilot was questioned by the Secret Service and the FAA, officials said. He was not considered a threat, they said.
12 March 2008 Events

- A Cessna 177 crosses the Air Defense Identification Zone (ADIZ) in violation of airspace rules

- NORAD warns pilot using the Visible Warning System

- The Cessna is escorted to Leesburg Airport by F-16 interceptors
NASAMS Integration Timeline

<table>
<thead>
<tr>
<th>FY04</th>
<th>FY05</th>
</tr>
</thead>
<tbody>
<tr>
<td>A M J J A S O N D J F M</td>
<td></td>
</tr>
</tbody>
</table>

- Chairman JCS Direction ▲
- AT&L funding ▲
- Fire Control Cue Developed ▲
- Integration with fire control unit ▲
- Live Fire Tests ▲ ▲
- NORAD Validation and Acceptance Testing ▲ ▲
- NASAMS IOC in NRC ▲

NASAMS developed, deployed and operational in nine months
NCR IADS

Key Attributes for Rapid Fielding

- Clear Charter with Clear Priorities
 - Schedule was #1; field ERSA by inauguration day 2005 (18 months)

- Senior DoD, Joint Staff, US Air Force, & US Army leadership buy-in
 - Short chain of command facilitated quick decisions

- Small, Focused, Empowered Team; 5 – Program Office, 7 Contractor, plus key external POC’s
 - Experienced, solution oriented, A-team type personnel
 - QRC focus – Long hours, 6 & 7 days/week were routine

- Recognition of Need for After-Fielding Clean Up
 - Formalized needed leases and MOAs/MOUs
 - Minor safety adds to installed equipment
 - Long-term transition planning
Motivation / Objectives
Air Force Rapid Capabilities Office
Rapid Prototyping
 - Rapid capability development examples
 - Enablers to rapid development
 - Prototyping to innovate
Summary
Enablers to Rapid Development

• Series of elements key to enabling rapid innovation, demonstration, prototyping, and fielding of critical military capabilities
Enablers to Rapid Development

- Series of elements key to enabling rapid innovation, demonstration, prototyping, and fielding of critical military capabilities
Open System Architecture

Advantages

- **Commonality allows lower cost** …
 - Plug and play pieces reusable from system to system

- **Innovation enabler** …
 - Allows entrance of “smaller” players, often with innovative ideas

- **Rapid development & rapid upgrades** …
 - Open design allows replacement of individual components
 - Allows isolation of components that evolve technically at differing rates (e.g., rapid Moore’s Law advance in computing)
 - Upgrades vs. replace; more responsive to agile threats
Open Systems Support
“Leverage Adapt” Strategy

- Open Systems supports “leverage and adapt” strategy; allows DoD to leverage commercial industry’s investment
- Continuous upgrade/refresh possible to meet evolving threats and obsolescence

“Leverage & adapt”
- Good for rapidly changing technology
- Good for rapidly changing requirements
- Built-in refresh and improvements
- More difficult to manage

“Freeze & build”
- Freezes technology and builds to fixed design
- Acceptable for slow moving technologies
- Requires stable requirements throughout lifecycle
- Easier to manage with current acquisition strategy
Layered Open System Architecture Approach

- OSA = Open System Architecture
- SOA = Service Oriented Architecture
- COI = Community Of Interest

- Change with technology and readily add new capabilities
Outline

- Motivation / Objectives
- Air Force Rapid Capabilities Office
- Rapid Prototyping
 - Rapid capability development examples
 - Enablers to rapid development
 - Prototyping to innovate
- Summary
Prototyping Facilitates Innovation

“It is far easier for [users] to articulate what they want by playing with prototypes than by enumerating requirements.”†

- Key additional use of rapid prototyping is for innovation; “simulate to innovate” concept
Development Approaches

Linear / “Waterfall” Approach

Fixed Design

- Problem
- Design
- Build
- Use

- Assumes “design” can be accomplished apriori
- No developer / user co-design

Rapid Prototype Approach

Inherent Feedback

- Problem
- Prototype
- Use
- Design
- Use

- Build prototypes to explore “design” approach
- Iterate based on user feedback; design influenced by user response

• Get user feedback
• Define requirements through “play”

• Understand problem
• Generate idea

• Use prototype to understand better approach
Prototype to Innovate

National Capital Region IADS
- Integrated Air Defense for protection of the National Capital Region

Touch Table
- Vehicle for novel data extraction / representation and action

X-37B Orbital Test Vehicle
- Unmanned reusable vehicle test platform for new space technologies
Summary

- Rapid prototyping permits timely, cost effective military capability development
 - Strongly motivated by increasing pace of threat cycle

- Air Force Rapid Capabilities Office (SAF/RCO) established to expedite development of selected DoD systems
 - Number of successful projects (e.g., ERSA, NASAMS)

- Success of rapid developments dependent on variety of factors
 - 80% solution mindset, strong team, enabling investments (e.g., Open system architectures)

- Additional rapid prototyping role in innovating new military capabilities
 - Rapid prototyping cycle allows refinement of solution
Challenge to S&T Community

- Traditional “S&T Gap” still exists; greater warfighter interchange needed

- Apply rapid prototyping approach earlier in S&T development

 Early insertion of new technologies
 Faster innovation
 Discovery of new / advanced capabilities

Mr. Randy Walden / (703)696-2407 / safcrowsworkflow@pentagon.af.mil