Why Should DoD Invest in Basic Research?

A Presentation for

The 9th Annual NDIA Science & Engineering Technology Conference/DoD Tech Exposition

Dr. William S. Rees, Jr.
Deputy Under Secretary of Defense
(Laboratories and Basic Sciences)
Office of the Director
Defense Research and Engineering,
April 15-17, 2008
Context

- The growth rate of the world population is declining
- 90% of population growth is in developing and poorer countries
- 40% of the world’s population – 2.5 billion people – live on less than $2 per day
- Proportion of working age adults (15-59) is expected to decrease in every area except Africa
- 880 million people were illiterate, 250 million children worked and 110 million school age children did not attend school, as of 2000

Source: “Joint Operating Environment” United States Joint Forces Command, December 2007,
Context

• By 2030, China is expected to have 348 million people over 60, nearly as many as the entire projected population of the US.

• 13% of the global population lived in cities in 1900. Today the global proportion of the urban population is 49%. 60% of the globe’s population - 4.9 billion people - will live in urban areas by 2030.

• Massive urbanization – 17 of 22 “mega cities” will be in the developing world by 2015.

Source: “Joint Operating Environment” United States Joint Forces Command, December 2007,
Context

- Since the 1970’s, weather/climate-related losses have increased about 10% per year and accounted for 88% of all property losses covered by insurers from 1980 to 2005
- India and China will develop “first world” energy appetites
- Many oil exporting countries may use production for their own economies

Source: “Joint Operating Environment” United States Joint Forces Command, December 2007
Context

- Current major supplies of petrochemical products will not keep pace with projected demand
- Only 12 years from now, machine intelligence could equal or surpass that of humans – eventually, it will become impossible to differentiate between man and machine
- Weapons of mass effect will shrink and proliferate: nuclear, bio, directed energy, nanotechnology, and CYBER

Source: “Joint Operating Environment” United States Joint Forces Command, December 2007
Context

• Science, technology, and engineering are available globally
• US scientific leadership is at risk
• Multi-disciplinary technologies will have revolutionary impact - 70% of world R&D is conducted outside the US
• China is now the third largest investor in R&D (adjusted for purchasing power), behind only the US and Japan

Source: “Joint Operating Environment” United States Joint Forces Command, December 2007
Context

- The United States is today a net importer of high technology products (+$54B in 1990 to -$50B in 2001)

Source: “Joint Operating Environment” United States Joint Forces Command, December 2007
OUTLINE

• DoD Basic Research

• DoD STEM Education

• Prize Competition
Leaders support Basic Research

• President Bush:

“…double federal support for critical basic research in the physical sciences…”

• The Secretary of Defense supports Basic Research

“… greater emphasis on basic research, which in recent years has not kept pace with other parts of the budget.”
Basic Research

- Basic research is systematic study directed toward greater knowledge or understanding of the fundamental aspects of phenomena and of observable facts *without specific applications towards processes or products in mind.*

It is farsighted high payoff research that provides the basis for technological progress.

Why Does DoD fund Basic Research?

• DoD is perpetually, permanently in the capability business
• By design, DoD’s capabilities depend on technology
• Technology is the fruit of science
• Basic Research produces the new, transcendent ideas
• Threats are multiplying, ramifying
• Science is burgeoning outside the US, spawning new technologies
• Technologies move rapidly across borders
• If technology exists, it will be used, first in weapons

We cannot know when a discovery will become a capability but we know with absolute certainty that without discovery, our capabilities remain static.
Why Does DoD fund Basic Research?

• Generates discoveries, new knowledge, and improved understanding
• Achieves technological superiority
• Prevents technological surprise
• Educates scientists and engineers in physical science disciplines
• Ensures that scientific expertise and engineering rigor supports DoD technical decisions
• Sustains the human talent and research infrastructure
Don't expect Basic Research to solve all problems
DoD S&T Requests

Note: Advanced Technology Development funding began in FY78
DoD Basic Research Funding FY1998-2009

(President’s Budget Request & Appropriated)

Appropriated

+28%

Requested

FY08 Constant Dollars (in Millions)

Source: DOD, DDR&E
RDT&E Budget Request Growth

FY09 Compared to FY08

(TY Dollars in Millions)

<table>
<thead>
<tr>
<th>BA-1</th>
<th>BA-2</th>
<th>BA-3</th>
<th>BA-4</th>
<th>BA-5</th>
<th>BA-6</th>
<th>BA-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>+271</td>
<td>-102</td>
<td>+543</td>
<td>+112</td>
<td>+1,439</td>
<td>+231</td>
<td>+2,185</td>
</tr>
</tbody>
</table>
RDT&E Budget Request Growth

FY09 Compared to FY01

(TRY Dollars in Millions)

BA-1 +482
BA-2 +1,111
BA-3 +2,350
BA-4 +8,964
BA-5 +10,876
BA-6 +1,746
BA-7 +16,046

FY09 Compared to FY01
FY08 & 09 DoD 6.1 Budget Request

Source: DOD, DDR&E
Sources & Destinations of Defense Basic Research Funding

Sources: 80% of Defense Basic Research is Investments by Military Departments

- **Army**: 22%
- **Navy**: 31%
- **DARPA**: 12%
- **DTRA**: 1%
- **CBD**: 80%
- **Industry**: 12%
- **Non-profits, Other**: 2%
- **FFRDCs**: 1%
- **Universities**: 53%
- **Intramural**: 7%
- **Industry**: 25%
- **OSD**: 4%
- **Air Force**: 27%
- **DTRA**: 1%
- **CBD**: 3%
- **DARPA**: 12%

Destinations

Performers of Defense Basic Research - 65% to Universities & Industry

- **Universities**: 53%
- **Industry**: 12%
- **Non-profits, Other**: 2%
- **FFRDCs**: 1%
- **Intramural**: 7%
- **Industry**: 25%
- **OSD**: 4%
- **Air Force**: 27%
- **DTRA**: 1%
- **CBD**: 3%
- **DARPA**: 12%

Sources: FY09 President’s Budget & DoD component inputs to NSF Federal Funds for R&D survey (FY06 - latest available)

Dr. William S. Rees, Jr. DUSD(LABS) NDIA CHASN.ppt 17Apr 08
Recipients of DoD S&T Funds

*Includes non-profit institutions, State & local govt., & foreign institutions

Source: National Science Foundation Report (PBR08)
FY09 President’s Budget Request for DoD Basic Research

- Defense Research Sciences
- University Research Initiatives
- National Defense Education Program
- University & Industry Research Centers

$K

0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000

Chem/bio

DTRA

OSD

DARPA

Air Force

Navy

Army

ILIR

6.1

Dr. William S. Rees, Jr. DUSD(LABS) NDIA CHASN.ppt

17Apr 08
Conceptual Strategic Planning Process

Joint Operational Capability Gaps

Not all joint operational capability gaps will have S&T capability gaps

Joint S&T Capability Gaps

QDR, SPG

Joint, Basic Research investment gaps

Map S&T Gaps Against Services’ Basic Research Programs

Extant Service specific Basic Research program

Some Service basic research initiatives address enterprise-wide issues

Department-level Basic Research Investment Guidance

Joint, Basic Research investment gaps

Not all joint S&T capability gaps will demand basic research investment

Some Service basic research initiatives address enterprise-wide issues

Unclassified

Classified

Dr. William S. Rees, Jr. DUSD(LABS) NDIA CHASN.ppt 17Apr 08
Quadrennial Defense Review

Traditional

Irregular

Defeat
Terrorist
Extremism

"Shifting Our Weight"

Catastrophic

Counter
WMD

Defend
Homeland

Shape
Choices

Disruptive

Today’s Capability
Portfolio
Desired S&T Investment Areas

(Joint Training is Ubiquitous)
FY07 DoD Basic Research
(by Taxonomy Category)

Total
$1.548B
Addition to DoD Basic Research

<table>
<thead>
<tr>
<th></th>
<th>FY08 PBR</th>
<th>FY08 Appropriation</th>
<th>FY09 PBR</th>
<th>Change from PBR 08</th>
<th>Real Change from PBR 08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Army</td>
<td>305.8</td>
<td>381.5</td>
<td>379.4</td>
<td>24.06%</td>
<td>21.36%</td>
</tr>
<tr>
<td>Navy</td>
<td>467.2</td>
<td>506.1</td>
<td>528.3</td>
<td>13.06%</td>
<td>10.61%</td>
</tr>
<tr>
<td>Air Force</td>
<td>375.2</td>
<td>407.7</td>
<td>452.3</td>
<td>20.55%</td>
<td>17.93%</td>
</tr>
<tr>
<td>Defense-Wide</td>
<td>279.9</td>
<td>338.3</td>
<td>338.7</td>
<td>21.00%</td>
<td>18.37%</td>
</tr>
<tr>
<td>Total Basic Research</td>
<td>1,428.1</td>
<td>1,633.7</td>
<td>1,698.6</td>
<td>18.94%</td>
<td>16.36%</td>
</tr>
</tbody>
</table>
OUTLINE

• DoD Basic Research

• DoD STEM Education

• Prize Competition
A Unique National Security Problem

HIGH

Quality

LOW

Job Applicants

Desired Employees

Clearable at highest level

Clearability

Not Clearable
Opportunities

• “The development of a strategic S&T scouting effort linked to the US university and private

“When I compare our high schools to what I see when traveling abroad, I am terrified for our workforce of tomorrow.”

- Bill Gates

technology, and engineering education in the United States.”

Rising Above the Gathering Storm, National Academy of Sciences, 2006.
Millennials are tomorrow’s workforce

• They watch wars and revolutions live on TV and the Internet
• Elvis died 20 years before they were born
• Satellite radio has been around since they were 5 years old
• They have only known two presidents
• WWI started nearly a century before they were born
• They have never seen a film camera
• There have always been hybrid cars

Source: “Millennial: About them” Navy Recruiting Command briefing, 7 Feb 2008
Millennials are tomorrow’s workforce

- They have always been online
- They have never known a world without digital phones or DVDs
- Soviet Union fell 7 years before they were born
- When Sputnik was launched, their parents were in kindergarten
- Their buddy lists span the globe.
- There has always been one Germany
- One electronic device does it all: TV, Internet, Phone, Music, Data, Computing

Source: “Millennial: About them” Navy Recruiting Command briefing, 7 Feb 2008
Globalism

• Millennials grew up seeing everything in the world as:
 – Global
 – Connected
 – Open for business 24/7

Source: "Millennial: About them" Navy Recruiting Command briefing, 7 Feb 2008
Millennials are tomorrow’s workforce

• They are taking longer to graduate from college

• Only 37% of first-time freshmen at four-year schools earned their bachelor’s degrees in four years

• Another 6% took up to six years

Source: “Millennial: About them” Navy Recruiting Command briefing, 7 Feb 2008
Millennials are tomorrow’s workforce

- They are technology sophisticates
- Through media multitasking kids are spending 6.5 hours a day with media, but are packing more than 8.5 hours worth of exposure into that time

Younger kids have more and more media devices; of those 8-14 years old -
- 39% have cell phones
- 24% have a hand-held Internet device or PDA
- 12% have a laptop computer

Source: "Millennial: About them" Navy Recruiting Command briefing, 7 Feb 2008
NDEP Portfolio Components

Pre-College (K-12)
- DoD Comm
- DoDEA
- Air Force
- Other Gvmt
- Digital Delivery
- Other Org’s
- STAR BASE
- Navy
- Math Content

Undergraduate Graduate
- DoD Employees
- DoDEA
- Other Org’s
- STAR BASE
- Navy
- Math Content

Post-Graduate
- NSSEFF
- DoD Affiliated Faculty

STEM Interest…
Potential DoD Employees

DoD Employees

Navy
Air Force
Other Gvmt
DoDEA
DoD Comm
Digital Delivery
Other Org’s
STAR BASE
Math Content

SMART

PEP
SLM
Note: Student awards (by state of residence)
NDSEG – Fellows’ Undergraduate Schools

As percentage of fellows selected for given year, with respect to FY07 top numbers
NDSEG – Fellows’ Graduate Schools

As percentage of fellows selected for given year, with respect to FY07 top numbers

KEY:

2004 Data
2005 Data
2006 Data
2007 Data

MIT
Stanford
Harvard
UC Berkeley
Princeton
Carnegie
U of MI
CalTech
Nwestern
U of IL Urbana
OUTLINE

• DoD Basic Research

• DoD STEM Education

• Prize Competition
Wearable Power Prize

- **1st Prize** $1M, **2nd prize** 500K, **3rd prize**: $250K
- Goal: Reduce weight of Warfighters’ power systems
- Competitors will produce prototypes that provide 20W average electric power continuously for 4 days, attach to a vest, and weigh 4 kg or less
- Capstone event will be held on October 4th, 2008, at the Marine Corps Air-Ground Combat Center, Twentynine Palms, California. See: http://www.dod.mil/ddre/prize
Wearable Power Prize Team Registrations

169 Teams Registered
Dr. William S. Rees, Jr.
Deputy Under Secretary of Defense
(Laboratories and Basic Sciences)

Office of the Director
Defense Research and Engineering

(703)-692-4592
william.rees@osd.mil