

Enhanced Decision Support with Adaptive Data Fusion

Stanley Young, John Palmer, Seth Greenblatt

Precision Strike Technology Symposium 2008

Goal

- Provide semi-automated assistance to decision maker for resource allocation issues
 - What data to send over scarce communications bandwidth
 - Where to focus limited number of analysts
 - Where to focus sensors
 - When to change focus
- Get the right people looking at the right data sooner

Approach

- Use all available (archived) sensor and event reports to train a filter to monitor sensor report stream
 - Results of training allow:
 - Reduce amount of real-time, high priority, data sent from sensor to processing node by selecting most relevant subset of data
- Monitor filter performance to determine when something has changed:
 - Sensor relevance/performance
 - Tactics of sensor targets

Motivation

- Too much raw data to send from collection nodes to processing nodes in real-time over limited bandwidth links
- Too much raw data to process in real-time from collection nodes at processing nodes
- We need to limit what we process and still produce relevant results
- We need to determine when we need to change what we use as input

Process

- Observe sensor reports HUMINT sensors and SIGINT internals
- Use current archive of reports to generate patterns of interest (e.g. correlated with events of interest) by training the system with complete set of archived reports
- Select relevant sensor reports (features) to reduce delay from collection to finished processing - Soft Retasking™
- Train the system using selected sensor reports (features) to identify patterns of interest
- Use trained system to process selected sensor reports
- When system needs to add/learn a new pattern, restart process with training the system with complete set of archived reports

Sensor Reports

- Use attributes from HUMINT and SIGINT internals reports as sensor inputs
- Sources of attributes
 - o Individual fields as applicable and available
 - Extracted entities and attributes from reports and transcripts
 - Other projects working on this aspect
- Use generated data for testing:
 - Three Bayesian Belief networks for (Actor, Action, Target) generate data.
 - Based on factors that are plausibly connected to end-state attribute of each.
 - Conditional probability tables that relate these factors to the (Actor, Action, Target) end state selection implicitly represent adversarial tactics and are, in fact unknown.
 - Change in values in tables represents change in tactics.
 - Goal is to recognize change and adjust processing to account for this change.

Raw HUMINT reports

Sample Sensor Reports

-[CASE-1]->~

.e created by PalmerJ at AustinInfo using Netica 1.12
Jun 28, 2007 at 14:10:36.

ActorThreat	t FinTies		Ethnicity Wkly		Wkly	y Contact Hostiles			Religious Focus			Criminal Focus			Religion		Actor Ge	
Hostile	Direct		Arab 30.608		_		_			Male			_		46.68	888	Yes	- Ye
Neutral	None	Arab	18.57	8.57 Relig:		ious None		Female	e	None	Zealo	ealot _		30.0792		No		
Friendly	None	Kurd	1.48767		Zealo	ot Some		Shia	Femal	e None		Norma	1 62.111		13	No	No	
Neutral	None	Arab	11.6549		Religious		None	Sunni	Femal	e	None	Zealo	t	29.0059		Yes	No	
Hostile	None	Arab	33.3205		Zealot		Some	Shia	Male	Uncle	Zealo	t	47.33	95	No	No		
Neutral	None	Arab	22.29	22.2961		None	Sunni	Female	e	Villag		ge Normal		6.6511		No	No	
Hostile	ShareBank		Turkmen		31.712		Zealot	t Some		Sunni	Male Tribe		Zealot		14.51	.16	No	No
Friendly	None	Arab	2.59035		Religious		None	Chris	tian	Male	None	Little		11.0394		No	No	
Hostile	Share	Acc	Arab	Arab 20.800		06 Zealot		Some	Shia	Femal	e	Sibli	ng	Zealot		26.22	74	No
Hostile	Direct		Arab	21.07	34	Zealo	t	Some	Shia	Male	Sibli	ng	Norma	1 43.92		:05	No	Ye
Hostile	ShareAcc		Arab	30.60	85 Zealo		t	Some	Sunni	Male	Tribe	Zealot		23.98	45	Yes	No	
Hostile	ShareAcc		Arab	ab 34.46 Zea		lot Some		Shia	Femal	Female Sibl		ng Normal		33.48	881	No	No	
Friendly	None	Arab	0.001	0.00136909		Religious I		ual Jewi		h Male		None	ne Little		19.9033		No	No
Neutral	None Arab		0.251959		Religious		Habit	ual	Shia	Male	None	Normal 3		38.7663		Yes	No	
Neutral	None	Kurd	17.9544		Religious		None	Shia	Femal	ale None		Zealot 4		42.0997		No	No	
Neutral	None	Kurd	17.2083		None	None	Sunni	Female		Village		Normal 8.		8.619	.61916		No	
Friendly	None	Arab	2.73632		Religious		None	Sunni	Male	Villa	ge	Norma	al 14.22		3	No	No	
Friendly	None Turkm		en 9.017		29 Relig:		ious	None Shia		Female		None	e Little		14.4174		No	No
Neutral	None	Kurd	21.54	07	Relig	ious	None	Shia	Male	None	Zealo	t	21.65	35	Yes	No		
Hostile	ShareAcc		Arab 25.428		88 Relig:		ious	Some	Chris	tian	Male	Uncle	Zealot		47.3212		Yes	Ye
Friendly	None	Kurd	7.723	51	Relig	ious	None	Sunni	Male	Tribe	Norma	1	52.49	41	No	No		
Friendly	ShareBank		Arab 6.7889		93 Relig:		ious	None	Shia Male		Uncle Little		e 9.9003		32	No	No	
Hostile	ShareBank		Arab 33.81		7 Relig:		ious	Some	Shia Male		Uncle Zealot		t 29.386		63	Yes	No	
Friendly	None	Arab	14.51	83 	Relig		None	Hindu	Male	None	Littl	e 	12.28	21	No	No		

Pattern Recognition - ARTMAP

- Adaptive Resonance Theory (ART) is a neural network architecture developed by Stephen Grossberg and Gail Carpenter
 - Build output categories to classify inputs
 - Carpenter, G.A. and Grossberg, S., 1987, "A massively parallel architecture for a selforganizing neural pattern recognition machine", Computer Vision, Graphics, and Image Processing, 37:54-115
- ARTMAP learns to classify arbitrarily many, arbitrarily ordered vectors into recognition categories based on predictive success
 - Two ART networks
 - One for input observations
 - One for event/result observation.
 - With network to link results of output and input networks
 - Carpenter, G.A., Grossberg, S., Reynolds, D.B., 1991, "ARTMAP: Supervised real-time learning and classification of nonstationary data by a self-organizing neural network", Neural Networks, 4:565-588

Find Patterns of Interest

- Use current archive of reports to generate patterns of interest by training ARTMAP with complete set of archived reports
 - Input ART network gets sensor reports as input
 - Example: Financial Ties, Ethnicity, Religion, Gender, etc.
 - Event/Result ART network gets event or result reports as input
 - Example: Actor-Threat

System Training

- ARTMAP supports on-line and off-line learning
 - Off-line takes advantage of statistical nature of selecting different training and validation sets from training data
 - Often trained until correctly classify all training data and weights stabilize
 - Can use "Don't know" classification as indicator that need to retrain system with potentially new sensor report features
 - On-line allows system to start processing immediately, albeit with a potentially higher error rate
 - Combination possible
 - Start with off-line and update weights as new reports are available
 - Use category creation as indicator of need to retrain

Select Relevant Features

- Soft Retasking™
 - Select relevant sensor reports (features) to reduce delay from collection to finished processing
 - System indicates which features should receive bandwidth and process priority
- Selection process based on weights allocated to feature during training
 - Motivating example from Carpenter, Grossberg, Reynolds categorization of mushrooms into poisonous or non-poisonous
 - 22 observable features
 - Categorization system used only 17 of these features

Patterns Specific to Relevant Features

- In experimental test, trained ARTMAP using selected sensor reports (features) to identify patterns of interest
- Original model using 5 features obtained error rate of 2% with 500 training samples
- Computing statistical correlation of category weights with observed threat identified features that could be excluded
- Reduced model using 3 features obtained error rate of 1.2% with 500 training samples

Monitor Sensors and Performance

- Use trained system to process selected sensor reports
 - Potential reduction of communication and processing time to get reduced selection of sensor reports
 - Potential for increased accuracy due to reduction in noise
- Monitor classification error rate and number of input classification categories to determine when to retrain with potential new set of features (sensor reports)

New Patterns as Required

- When system needs to add/learn a new pattern, restart process with training ARTMAP with complete set of archived reports
 - Restart when system needs to add a new classification category
 - Not restart when system only adjusts using current classification categories
- Retraining with complete set of reports allows for identification of need for new features to allow identification of potentially new tactics

Other Applications

- Processing multiple types of SIGINT and event reports
 - Identify patterns in SIGINT data associated with events
 - Identify network activity patterns (social network analysis) associated with events of interest (IED activity)
 - Networks built from SIGINT externals
 - Events culled from HUMINT reports and SIGINT internals
 - Allow watch for new patterns/tactics while monitor current activity
- Multi/Hyper-spectral decoy identification
 - Each layer as sensor report feature
 - Each decoy/threat type as result
 - Allow adapt to and identify new decoy/threat types

Other Applications

- Person identification
 - Usage pattern (e.g. radio, radar) as sensor report
 - Person identification as result
 - Allow adapt to and identify new persons
- Sensor fusion
 - Sensor data and metadata, i.e. data about the sensor, as sensor report
 - Fused picture as result
 - Allow adapt to and identify changes in sensor performance

Summary

Goal:

Get the right people looking at the right data sooner

Motivation:

- Too much raw data
- Select what data is relevant
- Mechanism to identify when "relevant" changes

Approach:

- Use filter to identify reduced feature set of interest
- User reduced filter to monitor reduced sensor stream
- Monitor filter performance to determine when to adjust feature set

Contact

 Enhanced Decision Support with Adaptive Data Fusion

- Stanley Young
- Overwatch Textron Systems
- syoung@overwatch.textron.com
- 512-358-2734