Aircraft Blast Mitigation

Herman Rediess, Ph.D.
Transition Program Executive
Explosives Division
Science and Technology Directorate

June 2-5, 2008
Problem Definition

Blast mitigation uses advanced structural materials and design to prevent an internal blast from resulting in catastrophic loss of the aircraft and its passengers.

- Explosives detection increasingly difficult and/or expensive as threat mass decreases.
- Aircraft hardening weight and costs increases as threat mass increases.
- Combination of detection and hardening may cost-effective “system solution.”

Graph showing:
- Cost on the y-axis.
- Threat Mass on the x-axis.
- Lines for Hardening, EDS, and Both, indicating cost changes with threat mass.
Research Objectives

• Determine and Demonstrate the Feasibility of Blast Mitigation Technologies to Enhance the Survivability of Civil Aircraft

• Key requirements for commercial transport application -
 • Security – threat mass protection requirements, areas of protection
 • Operational/End-User – minimize weight and life-cycle cost impact (capital investment, installation, maintenance, etc.)
 • Airworthiness – material and installation must meet FAA airworthiness certification regulations (flammability and other safety issues).
Aircraft Hardening Research Approach

• Aircraft blast mitigation areas:
 • Overhead bins and bin liners
 • Passenger cabin liners
 • Cargo hold liners
 • Hardened luggage containers
 • Least risk bomb location

• Address specific threat weights determined by limits of Explosives Detection Systems (EDS) performance coupled with aircraft survivability

• Evaluate basic characteristics and acceptability of materials before developing prototypes (material strength, flammability, adaptability for aircraft installations, etc.)

• Address concepts of operations, implementation approach, and airworthiness/certification issues with TSA, FAA and industry (Boeing and Airbus)

• Perform cost/benefit analysis of ballast mitigation technologies and installation
Hardened Sidewall Panel Tests
B-737, March 2008

• Panel Development:
 • Boeing Phantom Works (BPW) in cooperation with Boeing Commercial Aircraft (BCA), Aircraft Interiors Group
 • Panel material was successful in prior tests for FAA flammability conformance, blast fragmentation/shockholing resistance, and blast resistance test

• Panel Design:
 • Panel dimensions – 30” wide x 52” high x 0.4” thick
 • Panel weight – 19 pounds

• Installation Location:
 • Aircraft body stations 480R and 500R
 • Installed using existing aircraft sidewall panel shock mounts
B-737 BPW Sidewall Panel
Un-pressurized Test, March 2008
B-737 Standard Panel
Un-pressurized Comparison Test, March 2008
Hardened Sidewall Panel Tests
B-737, March 2008

• Explosive Threat Scenario:
 • Military C4, molded spherical shape
 • Threat encased in representative passenger carry-on luggage

• Test Results:
 • With BPW liner: 26” longitudinal crack below window frame, and window pane intact. No failed stringers or frames
 • Probably not catastrophic
 • Without BPW liner: 33”H x 26”W breach to aircraft fuselage skin, multiple cracked stringers and cracked frame
 • Likely catastrophic at cruise altitude pressurization

BPW Liner, Post-test (Interior View)
Standard Liner, Post-test (Exterior View)
Summary of Blast Mitigation Tests

- 90 explosive mitigation tests conducted for commercial aircraft structures
 - 18 Tests on Narrow-Body Aircraft
 - 13 in passenger cabin
 - 6 bin insert tests
 - 2 hardened bin tests
 - 3 hardened liner tests
 - 2 side wall panel tests
 - 5 in cargo hold
 - 1 hardened container
 - 4 hardened liner test
 - 72 Tests on Wide-Body Aircraft
 - 5 in passenger cabin
 - 1 bin insert test
 - 1 hardened bin test
 - 3 hardened sidewall panel tests
 - 67 in cargo hold (all hardened container)
- Over 300 Supporting Data Tests
 - Includes determining suppressive and equivalence properties of passenger luggage and air cargo contents on explosive effects
Blast Mitigation Results and Status

• **Accomplishments:**
 - Fielded a practical solution for wide-body cargo holds (HULD)
 - TSA conducting pilot flight test program
 - Weight and cost are still issues
 - Demonstrated capability of hardened bins and liners for specified threat scenarios
 - Materials and design meet FAA airworthiness requirements
 - Weight and cost are still issues
 - Completed cost-benefit analysis on selected blast mitigation technologies to aid TSA in policy decisions
 - HULD, cargo liner, and hardened overhead bin

• **What is Needed:**
 - Practical blast mitigation solutions for narrow-body aircraft cargo holds
 - Assess effectiveness of blast mitigation technologies against other explosives
 - Low-weight/low-cost hardening solutions for all aircraft applications
 - Modeling and simulation capability for blast mitigation studies
 - New materials and explosives
 - Broad range of existing and emerging transports
 - Address passenger surface conveyance blast mitigation