Determining Video Quality Requirements for Public Safety Applications

Carolyn Ford, Ph.D.
Electronics Engineer
Institute for Telecommunication Sciences
National Telecommunications and Information Administration
U.S. Department of Commerce

“Putting First Responders First”
Outline

• Introduction
• Scope
 • Video applications for Public Safety
 • Parameters of Quality
• Measurement of Quality
• Future work
• Conclusions
Introduction

• SoR: Statement of Requirements for Public Safety Communications Interoperability
 • Volume 1
 – Developed for DHS by SAFECOM, NIST/OLES and NTIA/ITS
 – Contained qualitative requirements for video
 – No quantitative requirements for video
 – Latest version released October 2006.
 • Volume 2
 – ITS tasked with determining quantitative requirements for video
 – First version released August 2006
Scope

• SoR Goal: specify network performance parameters to meet these applications' [mission-critical video] quality of service needs.

• To make the project realistic, we must determine
 – Application areas to be covered
 – Parameters of quality to be addressed
 – Measurement system to be used
Public Safety Video Applications

• Tactical – remotely directing events
 – SWAT
 – US&R robots (PerMIS)
 – Fire fighting (visible spectrum cameras)
• Live Surveillance – real-time monitoring
 – In-car police cameras (IACP)
 – Commercial (SWGIT)
 – Sporting events
• Forensics – recorded evidence (LEVA)
• Future: Telemedicine, IR cameras, other??
Quality Parameters

What do we mean by “quality?”

• Content
 – Acting, composition, lighting

• Optics
 – Dynamic range, focus, resolution

• Channel: capture and transmit
 – Frame rate, compression, network loss

• Display
 – Pixel aspect ratio, color map
Quality Parameters, con’t

What is the intended use for the video?
• Level of discrimination required
 – General elements of the action
 – Class recognition
 – Positive ID (face, object, alpha-numeric)
• Relative size of the targets (object, head) of interest
 – Percentage of the frame occupied
• Relative complexity of the scene
 – How much motion
 – How many objects
Measuring Quality

• The ITU has published many standards for measuring and modeling video quality
• These methods are based on the application of passive entertainment
 – Randomly selected viewers report perceived quality
• Public Safety video is used to perform recognition tasks
• ITS has developed, and submitted to the ITU, a test method to measure the quality of task-oriented video
• Subjective tests are being performed at ITS
 – Expert viewers perform tasks
Quality measurement test method

• Viewers are asked to perform tasks:
 – Detect target presence
 – Report target characteristics
 – Target positive ID

• Methods:
 – Multiple choice
 – Alpha-numeric entry
 – Real-time vs. playback controlled

• Video impairments
 – Compression, network errors
Example
Test Output

• Example with three parameters
 – Scene complexity [low/high]
 – Target size [small/large]
 – Network packet loss rate [none/low/high]
 – One set compression rate
Plan for SoR Volume 2

• Given the application’s:
 – Target size
 – Complexity of scene
 – Level of discrimination required

• SoR V2 will provide guidelines for:
 – Compression requirements
 – Network (packet loss) requirements
Future Work

• Biometrics
 – Observer facial recognition
 – Automatic facial recognition
• Telemedicine
• Fire
 – IR and night vision
 – Specific testing for “smoke reading”
• Emerging technology
 – Error concealment
 – Compression algorithms
Viewers Needed

• Experts in
 – Forensic video (February ’08)
 – Live surveillance
 – Fire

• Details
 – Free trip to beautiful Boulder, CO
 – Travel paid, but not time
 – Test takes approximately 2 hours
 – More details at www.its.blrdrc.gov/psvq
Conclusions

• SoR Volume 2 will assist Public Safety organizations determine their video equipment requirements.
• Goal is to prevent agencies from over- or under-specifying video equipment purchases.
• Test methods and scenes can be provided for equipment evaluation.
• Many organization’s efforts can be coordinated (IACP, PerMIS, SWGIT, etc).
• Need first responders for subjective testing.