Development of the NLOS-LS PAM Warhead

43rd Annual Armament Systems: Guns & Missile Systems Conference & Exhibition

April 21 – 24, 2008
New Orleans, LA
NLOS-PAM Team

- Prime Contractor: NetFires LLC
 - Raytheon Missile Systems
 - Lockheed Martin Missiles & Fire Control
NLOS-PAM Overview

- Low cost, direct attack missile
- Provides precision fire support for the Brigade Combat Team and for USN Littoral Combat Ship
PAM System Description

- Large multi-mode warhead
- 7-inch diameter 120 lb class
- Range 0-40 kilometers
- Effective against moving and stationary targets
- In-flight updates, retargeting and image capabilities
- Target sets
 - Light armor
 - Heavy armor
 - Bunkers
 - Fortifications

PAM Warhead Effectiveness

PAM Seeker Image of Land and Sea Targets
Multimode Warhead Challenges

- Short Stand-Off
- High Penetration Performance
- Strict IM requirements
- Cost as a Key Performance Characteristic
- Small Envelope
- Evolving Requirements
Warhead Overview

Explosive Billet
PIC
Liner
Retaining Ring
Fragment Barrier
Clamp Ring
Warhead Development

- Competitive Risk Reduction Effort
 - Trade Studies
 - Explosive Material (Penetration Performance vs. IM Performance)
 - Casing Design (Materials to reduce sensitivity to Fragment Impact)
 - Liner Material Study (Penetration Performance vs. Cost)
 - Analysis
 - Penetration Performance (Hydrocode)
 - Seeker Keep Out Zone
 - Testing
 - Jet Characterization
 - RHA and Armor Targets (Penetration Performance)
 - Soft Targets (Arena and Bunker Testing)
 -Insensitive Munitions Testing (Slow Cook-Off and Fragment Impact)
- Followed by the Detail Design Phase
Modeling & Simulation

- Fragment Barrier Analysis
 - Understanding the Physics
 - Study the effects of different Materials
 - Study the effects of different configurations

- Slow Cook-Off Performance Analysis
 - Design Features to Allow Venting
 - Thermal Analysis

- Penetration Performance
 - 2D Hydrocode
 - Optimize Design

- Jet Characteristics
 - 3D Hydrocode
 - Ensure Straightness of Jet
PAM Warhead Performance

<table>
<thead>
<tr>
<th>Key Characteristic</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range target penetration depth</td>
<td></td>
</tr>
<tr>
<td>Range target penetration diameter</td>
<td></td>
</tr>
<tr>
<td>RHA penetration</td>
<td></td>
</tr>
<tr>
<td>Mass</td>
<td></td>
</tr>
<tr>
<td>Design to cost</td>
<td></td>
</tr>
</tbody>
</table>
Performance Testing

- Tested 5 Different Design Variations
- Conducted over 100 Explosive Tests
 - Arena Testing
 - Jet Characterization
 - RHA Penetration
 - ERA Target Penetration
 - Environmental Testing
 - Behind Armor Debris Testing
 - Reliability (Vari-Comp)
IM Testing

<table>
<thead>
<tr>
<th>Threat</th>
<th>Test Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast Cook-off</td>
<td>Type V</td>
</tr>
<tr>
<td>Slow Cook-off</td>
<td>Type V</td>
</tr>
<tr>
<td>Bullet Impact</td>
<td>Type V</td>
</tr>
<tr>
<td>Fragment Impact</td>
<td>Type V</td>
</tr>
<tr>
<td>Sympathetic Detonation</td>
<td>Type V*</td>
</tr>
<tr>
<td>Shaped Charge Jet</td>
<td>Type I*</td>
</tr>
</tbody>
</table>

*Expected
Production Readiness

- Lean Design Effort
 - Use Low Cost Materials
 - Reduction of the number of Parts
 - Incorporation of Molded Components
 - Detail tolerance stack up analysis to optimize tolerances
 - Work with each component Vendors on reducing Cost Drivers
 - Streamline Assembly Process

- Early Development of Acceptance Testing
 - Perform Lot Acceptance Tests (LAT) to Characterize Variation

- Control of Critical Characteristics
 - Characteristics that mostly control performance variation

- Pilot Production Line incorporated on Qualification Build
Design Challenges

- Striking a Balance between Low Cost and High Performance
- Integrating Production Processes early on
- Mitigating Fragment Impact and Slow Cook-Off Hazards
- Maintain Performance with Environmental Factors
- Incorporating Environmentally Compliant Processes and Products
Acknowledgements

● Raytheon Missile Systems
 – Bill Zarr