INSENSITIVE GUN PROPELLANTS
WITH LOW TEMPERATURE COEFFICIENT BASED ON DNDA

Dr. Dietmar Mueller
Fraunhofer Institut Chemische Technologie (ICT), D-76327 Pfinztal, Germany
mue@ict.fhg.de

43rd GUN & MISSILE SYSTEMS CONFERENCE
April 21-24, 2008
New Orleans, LA, U.S.A.
INSENSITIVE GUN PROPELLANTS

Content

♦ Processing Technology
♦ Low Temperature Coefficient (LTC) Propellants
 ● Temperature Behaviour
 ● Characteristics of the Propellant Components
 ● Performance, Safety & Sensitivity Datas
 ● Shaped Charge Tests
 ● Closed Bomb Tests
 ● Gun Firing
 ● Erosivity

♦ Results & Conclusion
INSENSITIVE GUN PROPELLANTS

Processing Technology for Inensitive Gun Propellants based on DNDA

Continuous Process
- Shear Roll Mill
- Twin Screw Extruder (TSE) ZSK 58 E

Batch Process
- Kneader / Mixer
- Rampress
INSENSITIVE GUN PROPELLANTS

Shear Roll Mill (Continuous Process)
INSENSITIVE GUN PROPELLANTS

Corotating intermeshing Twin - Screw Extruder ZSK 58 E
INSENSITIVE GUN PROPELLANTS

Twin - Screw Extruder Process

- Remote Controlled Refilling Equipment
- Solid loss-in-weight Feeder
- Solvent Pump System
- Gear Box Hydraulic Drive
- Dewatering
- Die with Die Lift-Off-System (Safety Device)
- Conveyer
- Cutter
- Conveyer (swivel)
- Conveyer (wide)
- Strands Cutter

TSE 58 E
INSENSITIVE GUN PROPELLANTS

Temperature behaviour of gun propellants
Max. gas pressure vs propellant temperature

- LTC Propellant
- DNDA Propellant
- Conventional Propellant

△P_m

maximum gas pressure
propellant temperature (°C)
INSENSITIVE GUN PROPELLANTS

ARC measurement of several Nitrocellulose (NC) types
INSENSITIVE GUN PROPELLANTS

Lightmicroscope pictures of different NC types

NC M30 NC CP2 NC 53
ARC measurement of RDX, FOX-12 and DNDA
INSENSITIVE GUN PROPELLANTS

ARC
DNDA-5,7 compared with NENA
Microcalorimeter Result of DNDA-5,7
Endothermic Behaviour

Heat - Development at 89°C

- INSENSITIVE GUN PROPELLANTS

- DNDA 120401WH

- DNDA 120401 WH Q

- Time (Days)

- dQ/dt (µW/g)

- Q (J/g)
INSENSITIVE GUN PROPELLANTS

Performance Data of LTC Propellants

<table>
<thead>
<tr>
<th>RDX / FOX-12</th>
<th>x</th>
<th>x</th>
<th>x</th>
<th>x</th>
<th>x</th>
<th>x</th>
<th>x</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>DNDA-5,7</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Stab., Additives</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>T [K]</td>
<td>2540</td>
<td>2913</td>
<td>3118</td>
<td>3160</td>
<td>3264</td>
<td>3335</td>
<td>3390</td>
<td></td>
</tr>
<tr>
<td>Force [J/g]</td>
<td>1080</td>
<td>1182</td>
<td>1212</td>
<td>1229</td>
<td>1250</td>
<td>1263</td>
<td>1300</td>
<td></td>
</tr>
<tr>
<td>Q_{ex} [J/g]</td>
<td>4000</td>
<td>4204</td>
<td>4347</td>
<td>4411</td>
<td>4519</td>
<td>4594</td>
<td>4730</td>
<td></td>
</tr>
<tr>
<td>Mw [g/mole]</td>
<td>19,4</td>
<td>20,8</td>
<td>21,4</td>
<td>21,4</td>
<td>21,7</td>
<td>21,9</td>
<td>22,1</td>
<td></td>
</tr>
</tbody>
</table>

Reaction gas

| Reaction gas | 19,4 | 20,8 | 21,4 | 21,4 | 21,7 | 21,9 | 22,1 |

Note: till max. 59 Wt. - %
INSENSITIVE GUN PROPELLANTS

Safety Data of selected LTC Propellants

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass - Loss weight after 18 days, 90 °C</td>
<td>0.50 till 0.70 %</td>
</tr>
<tr>
<td>Mass - Loss weight after 30 days (no autocatalytic effects)</td>
<td>1.10 till 1.40 %</td>
</tr>
<tr>
<td>Ignition temperature</td>
<td>> 215 °C</td>
</tr>
<tr>
<td>Cook - off temperature approx.</td>
<td>> 210 °C</td>
</tr>
</tbody>
</table>
INSENSITIVE GUN PROPELLANTS

Sensitivity Data of different DNDA - Propellants

<table>
<thead>
<tr>
<th></th>
<th>FOX - Prop. ICT 8</th>
<th>FOX - Prop. ICT 7</th>
<th>RDX - Prop. ICT 1</th>
<th>i-RDX - Prop. ICT 2</th>
<th>RDX - Prop. mod. DNDA ICT 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaktion Class</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shaped Charge Test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cal. 35 mm</td>
<td>O</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Friction Sensitivity</td>
<td>[N] 240</td>
<td>252</td>
<td>288</td>
<td>240</td>
<td>240</td>
</tr>
<tr>
<td>Impact Sensitivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Nm]</td>
<td>6,0</td>
<td>7,5</td>
<td>6,0</td>
<td>6,0</td>
<td>5,0</td>
</tr>
<tr>
<td>Ignition Temperature</td>
<td>[°C] ~ 200</td>
<td>~ 200</td>
<td>~ 220</td>
<td>~ 216</td>
<td>~ 219</td>
</tr>
<tr>
<td>1" Detonationtube</td>
<td></td>
<td></td>
<td></td>
<td>no Detonation</td>
<td></td>
</tr>
<tr>
<td>MG cal.50 /12.7 mm</td>
<td></td>
<td></td>
<td></td>
<td>IM Reaktiontype 5 (MIL – STD 2105B)</td>
<td></td>
</tr>
</tbody>
</table>

WIWEB Results
INSENSITIVE GUN PROPELLANTS

Shaped Charge Tests, FOX Propellant ICT 8 and RDX Propellant ICT 1
INSENSITIVE GUN PROPELLANTS

Longtherm - Storage Stability at 90 °C
Mass - Loss over Time

ML [%]

DNDA Propellant
90°C

ML average

Days [d]
INSENSITIVE GUN PROPELLANTS

Longtherm - Storage Stability at 90 °C
Mass - Loss over Time

ML [%]

DNDA Propellant
90°C

ML average

Days [d]
ARC
Accelerating Rate Investigations of DNDA - Propellants compared with CAB-Lova, M30, Single Base and Double Base
INSENSITIVE GUN PROPELLANTS

Batch Process Mixer compared with Shear Roll Mill

vivacity of the propellants

Los 250199/W

Los 180705

Los 190705

$\Delta=0.2g/ml$ in $V_b=310ml$

0.2g/ml in $V_b=310ml$

$\Delta=0.2g/ml$ in $V_b=310ml$

Low Friction

High Friction

Fraunhofer Institut Chemische Technologie
INSENSITIVE GUN PROPELLANTS

Batch Process Mixer compared with Shear Roll Mill Process

vivacity of the propellants

Los 250199/W - 1 \(\Delta=0.2 \text{g/ml in V_b=310 ml} \)

Los 180705 \(\Delta=0.2 \text{g/ml in V_b=310 ml} \)

Los 190705 \(\Delta=0.2 \text{g/ml in V_b=310 ml} \)

Gas pressure of the propellants

Gas pressure in the Gun
LOS 250199

Gas pressure in the Gun
LOS 180705

Gas pressure in the Gun
LOS 190705

Fraunhofer
Institut Chemische Technologie
INSENSITIVE GUN PROPELLANTS

Linear burning rate of LTC Propellants at different pressures

![Graph showing linear burning rate of LTC Propellants at different pressures. The graph plots linear burning rate (m/s) against propellant temperature (°C) for pressures of 3000, 2500, 2000, and 1500 bar. The burning rate decreases with increasing pressure and is highest at 3000 bar.](image-url)
INSENSITIVE GUN PROPELLANTS

40 mm Gun Firing Tests of 3 LTC Propellants based on DNDA, NC, RDX

![Graph showing the relationship between propellant temperature and maximum gas pressure for different propellants.](image-url)
INSENSITIVE GUN PROPELLANTS

75 mm Scale model gun derived from cal. 120 mm tank gun (Diehl BGT)

♦ based on interior ballistic similarity laws
♦ less cost (combustible paper case, less propellant mass)
Test Firing in 75 mm cal. Model Gun (Diehl BGT)

Optimized propellant for firing at 21°C

Gas pressure vs temp.

![Graph showing gas pressure (P_m) vs temperature (T) for JA 2 and LTC Prop.](image)
INSENSITIVE GUN PROPELLANTS

Test Firing in 75 mm cal. Model Gun (Diehl BGT)

Optimized propellant for firing at 21°C
Muzzle velocity vs temp.
Muzzle velocity of LTC propellant same at 21°C like JA 2

\[V_o \text{ vs } T \]

\begin{center}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline
\textbf{Temp. [°C]} & -40 & +21 & +50 \\
\hline
\textbf{\(V_o \) [m/s]} & 1500 & 1550 & 1600 & 1650 & 1700 & 1750 \\
\hline
\end{tabular}
\end{center}
Erosivity of LTC - Propellants and Conventional Propellants
Results from Diehl BGT
INSENSITIVE GUN PROPELLANTS

Results & Conclusion

♦ LTC Propellants based on DNDA 5,7 for a wide Caliber - Range
♦ Excellent Shaped Charge Test results (Reaktion Class 0 or A)
♦ High Ignition Temperature > 215 °C
♦Insensitive, Reactiontype 5 (MIL - STD 2105 B)
 Shaped Charge Test
 MG cal. 12.7 mm firing on Steeltube with propellant
♦ Excellent Longtherm Stability
♦ Low Combustion Temperature at High Force
♦ Low Gun Tube Erosion
♦ Pilot Lot for Eurofighter - Gun, Mauser cal. 27 mm