Electronic Fuze Device (EFD) and ESA

Oran Zeldin
Background

- IMI is investing in the development of smart munition systems (tank, mortar and artillery munitions).
- Smart fuzes are required to enhance system capabilities and effectiveness.
- Under this perspective IMI started in 2004 the development of the Electronic Fuze Device (EFD).
Main Design Guidelines

- **Generic Design as possible** – The design should enable easy compatibility to wide range of applications (including dimensions).

- **Electronic Safe and Arm (ESA)** – The design should be based on electronic safe and arm using an inline EBW/LEEFI detonator.

- **MEMSization** – In order to get a miniature, generic fuze and high survivability the design should make maximum use of MEMS components (sensors, detonator etc.). MEMS technology enables high functionality and high integration capabilities in small dimensions and as a result high survivability.

- **Communication Interfaces** – The hardware design should enable the use of various communication interfaces – standards or customized to the clients performance requirements.
Main Design Guidelines

- **Data Logging** — The EFD should consist of logging capability of all the firing process events such as safe range, sensors inputs, time for detonation, time for self destruct and more. This function should be used mainly in development firing tests.

- **Compliance with MIL-STDs and Stanags** — The EFD should comply with all relevant mil-std and stanags including the following: mil-std1316, stanag 4187 and mil-dtl 23659.
Weapon Application

- The first chosen weapon application was M203 (40 mm Rounds).
- This application enables testing of different operation modes and high functionality.
- Safety conditions —
 - Acceleration (sensed by mechanical g-switches at first phase of development)
 - Spin (Sensed by either MEMS magnetometer or mechanical g-switch)
- Impact is sensed by MEMS accelerometer enabling layers count or target identification.
Functionality and Modes of Operation

- Self Destruct (time based)
- Low Battery Self Destruct
- Air Burst
- Air Barrage
- Communication Interface (to launcher)
- SW updates and debug
- Impact
- Layers Count
- Delayed Impact (Window)
- Neutralization

- μP
- XPGA
- Turns Count (for accurate range)

- Time based operation
- Sensing based explosion
- Self destruction
- Time + Sensing explosion

Munition Systems Division
Unclassified
Logic Circuit

Diameter: 34.7 mm
High Voltage (HV) circuit characteristics

- Charging duration - 300 msec maximum.
- Capacitor charging voltage - up to 1200V.
- Super quick discharge – 10KA at 1μsec
- Diameter: 34.7 mm.
- Height: 10-15mm
40 mm Assembly

Tested under 13000 g’s axial and spin rate of 50Hz (in operation).
Test Results for 40 mm

Logger Results
195msec Safe Range cir
300msec Safe time for arm
1000msec Trigger
14000msec Time to self destruct
14000msec Trigger
16005msec Capacitor Discharge
31005msec Batteries Discharge

Magnetic field simulator

Projetcile spin

<table>
<thead>
<tr>
<th>spin (rd/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>70</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>time (m/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1000</td>
</tr>
<tr>
<td>2000</td>
</tr>
<tr>
<td>3000</td>
</tr>
<tr>
<td>4000</td>
</tr>
<tr>
<td>5000</td>
</tr>
<tr>
<td>6000</td>
</tr>
<tr>
<td>7000</td>
</tr>
<tr>
<td>8000</td>
</tr>
<tr>
<td>9000</td>
</tr>
</tbody>
</table>
Field Tests

Tests barrel
(enables pressures measurements)

Mission Load station for tests
Tests results – Accelerometer on 120mm SRV mortar bomb

Tests were conducted on other platforms as well

![Graph showing acceleration over time with key events labeled: Body Separation, Parachute begins to Open, Parachute fully Open, Velocity Stabilized.](image-url)
EFD Road Map

- Performance Improvements
- Applications
- Fuze On Chip
- QUAL
- MEMSIZATION
- Firing Tests
- 40 mm Prototype
- Laboratory Prototype
- Feasibility Study
- Kickoff
- 2004
- 2005
- 2006
- 2007
- 2008
- 2009 and on

Munition Systems Division