Lessons Learned in EVM Control Account Analysis & Design

Thomas Cowles
November 19, 2008
#7112 – Lessons Learned in Earned Value Management (EVM) Control Account Analysis & Design

A Presentation for the 8th Annual CMMI Technology Conference and User Group
November 17-20, 2008
Hyatt Regency Tech Center, Denver, Colorado

Thomas Cowles
Raytheon Space and Airborne Systems
Abstract

- Earned Value Management (EVM) is a powerful method of program management and control that integrates cost with the technical and schedule objectives of a project.

- EVM is used in the aerospace/defense industry throughout the world, including Raytheon Company.

- The purpose of this presentation is to discuss and examine Lessons Learned regarding the analysis and design of Control Accounts in an EVM system.

- The presentation will list several practical Control Account strategies employed at Raytheon Space and Airborne Systems that any organization can use to improve the quality and utility of their program’s EVM system.
Presentation Assumptions

Participants Have Basic Knowledge of

– EVM

– Program Structures
 • Work Breakdown Structure (WBS)
 • Organizational Breakdown Structure (OBS)
 • Control Accounts (CAs)

– Integrated Master Schedule (IMS)

– EVM Baseline Development Basics (Work Packages, Planning Packages, Earned Value Techniques, etc.)
Agenda

- WBS
- OBS
- Control Account
 - What Is It?
 - Formation
 - Planning
 - Analysis
 - Design
Work Breakdown Structure (WBS)

- A product-oriented family tree
 - End-items, goods, and/or services
- Subdivides program into consistent, well-defined elements
 - Allows clear management accountability
- Provides a structure for budgeting and tracking performance to cost and schedule
- Reference: MIL-HDBK-881A
Organizational Breakdown Structure (OBS)

- Identification of organizational responsibilities
- Assigned to each WBS element

Diagram:

```
IPTL Irene

   Adam
   Brenda
   Charlie
   David
```
How a Control Account is Formed

Integration of Work Scope, Budgets & Organizational Responsibility Occurs at the Control Account
What Is A Control Account (CA)?

- Defined as an intersection of the WBS and OBS
 - Multiple intersections result in multiple Control Accounts
- Each CA is assigned to a single responsible manager
 - The Control Account Manager (CAM)
- A management control point in an EVM system
 - Represents the work assigned to one responsible organizational element or IPTL/CAM on one program WBS element
- Level most commonly used for internal & external reporting
- Further sub-divided into work packages (tasks), planning packages and charge numbers
What Is A Control Account (CA)?

- The purpose of the Control Account is to integrate together
 - Technical Scope, Schedule and Budget

- As the program executes, actual costs are also collected into each CA and then compared against the budgets (resource plans) and the earned value for management control purposes
 - Scope, schedule, and budget flow into the CA via IMS work packages
 - Costs flow into the CA via charge numbers in the accounting system
 - The budgets (BCWS) and the costs (ACWP) in each CA are then compared to the Earned Value (BCWP) in each CA to get the EV derived metrics used by management
 - SV, CV, SPI, CPI, etc. (see List of Acronyms)
Typical Control Account Planning

1. Define Control Accounts
2. Define work packages & planning packages
3. Sequence work package & planning package tasks
4. Establish work package & planning package durations & resources
 - Type of resource
 - Amount of resource
5. Assess resource plan – is plan reasonable?
 - Too flat? Too steep? Too erratic?
6. Review, validate and reconcile baseline
Typical Control Account Planning

1. **Define Control Accounts**

 - Define work packages & planning packages
 - Sequence work package & planning package tasks
 - Establish work package & planning package durations & resources
 - Type of resource
 - Amount of resource
 - Assess resource plan – is plan reasonable?
 - Too flat? Too steep? Too erratic?

2. Review, validate and reconcile baseline
Control Account Analysis

Lesson Learned #1

- Evaluate the work to be performed in the control account per unit of time
 - Type of work
 - Level of Effort (LOE)? Discrete?
 - Labor? Material? Other Direct Costs (ODC)?
 - Amount of work
 - Time factors
 - Serial effort(s)
 ✦ May only need one Control Account
 - Parallel efforts
 ✦ May need more than one Control Account
Control Account Design
Lesson Learned #2

- **Segregate Level of Effort (LOE) into its own control account**
 - LOE can cloud or hide performance of discrete work

Notes:
- Level of Effort is a specific Earned Value Technique (EVT) for a work package.
- LOE tasks have no measurable product or output and are measured through the passage of time rather than by completion of a discrete effort.
Lesson Learned #3

When terminating a Control Account in the WBS structure, ensure future growth potential into a parallel WBS leg

- Verify termination point for every control account created provides the opportunity path forward for future parallel control accounts
- Preparation for future business
- Good fundamental structure in case of future difficulties
- Preserves the WBS structure
Control Account Design

Lesson Learned #3

When terminating a Control Account in the WBS structure, ensure future growth potential into a parallel WBS leg

Example 1: WBSxxx22A – IPT Management (Mgmt)
 WBSxxx22B – Engine
 WBSxxx22C – Special Test Equipment (STE)
 WBSxxx22D – Manuals

Example 2: WBSxxx22A1 – IPT Mgmt
 WBSxxx22B1 – Engine
 WBSxxx22C1 – Special Test Equipment (STE)
 WBSxxx22D1 – Manuals

Example 2 is an Improvement over Example 1
■ **Accommodate managers with varying experience levels**

– More experienced managers
 - Can handle multiple Control Account assignments

– Less experienced managers
 - Assign fewer Control Accounts to each manager
 - Equivalent coverage is obtained with more managers

– Example
 - STE as a single Control Account versus
 - STE split into multiple Control Accounts: Software, Hardware, etc.

– Why? Improved program risk management
 - Succession planning – Attrition and turnover
 - Provides opportunities for career growth with less experienced staff members
Accommodate managers with varying experience levels

Example 2:
- WBSxxx22A1 – IPT Mgmt
- WBSxxx22B1 – Engine
- WBSxxx22C1 – STE
- WBSxxx22D1 – Manuals

Example 3:
- WBSxxx22A1 – IPT Mgmt*
- WBSxxx22B1 – Engine*
- WBSxxx22C1 – STE
 - WBSxxx22C1A1 – STE Hardware*
 - WBSxxx22C1B1 – STE Software*
- WBSxxx22D1 – Manuals*

*Designated Control Account

Example 3 is an Improvement over Example 2
Accommodate managers with varying experience levels

- OBS (org chart) now showing Control Account assignments

IPTL Irene

- **Adam**
 - WBSxxx22B1
 - Engine

- **Brenda**
 - WBSxxx22C1A1
 - STE Hardware

- **Charlie**
 - WBSxxx22C1B1
 - STE Software

- **David**
 - WBSxxx22D1
 - Manuals
Control Account Design

Lesson Learned #5

- Create control accounts that are “wide and shallow” versus “narrow and deep”
 - The river analogy
 - Assumption = You really do want to know what’s going on
 - Let the accounting system do the work for you
Lesson Learned #6

- Include Event and Failure Reports (EFRs) / Anomalies into your baseline budget plans

- Recommend separating into different Control Accounts the “regular” work (if no failures occurred) from the Event and Failure Reports (EFRs) / Anomalies
 - Bring to bear auto analysis tools from finance system: TCPI, IEAC, etc.
 - Will not have to manually track & calculate whether over runs / under runs are due to
 - Regular work
 - EFRs
 - A combination of both
Summary

- Management uses EVM data to proactively respond to program indicators, not just to generate historical EVM data. This proactive response is the ultimate EVM contribution to a program’s success.

- Effective analysis and design of control accounts will enable a PM / IPTL / CAM
 - To better match the WBS with their team org chart
 - To proactively manage variances of schedule and cost
 - To preserve the program’s overall performance baseline
List of Acronyms

- ACWP – Actual Cost of Work Performed or *Actual Cost* (Cost of work accomplished)
- BAC – Budget At Completion
- BCWP – Budgeted Cost of Work Performed or *Earned Value* (Value of work accomplished)
- BCWS – Budgeted Cost of Work Scheduled or *Planned Value* (Value of work planned)
- CA – Control Account
- CAM – Control Account Manager
- CPI – Cost Performance Index
- EAC – Estimate At Completion
- EFR – Event and Failure Report
- EVM – Earned Value Management
- IEAC – Independent Estimate at Completion
- IPTL – Integrated Product Team Lead
- LOE – Level of Effort
- OBS – Organizational Breakdown Structure
- ODC – Other Direct Costs
- PM – Program Manager
- SPI – Schedule Performance Index
- STE – Special Test Equipment
- SV – Schedule Variance
- TCPI – To Complete Performance Index
- WBS – Work Breakdown Structure
Questions?

Thomas Cowles
Raytheon Space & Airborne Systems
Tel: 310.616.7292
Email: trcowles@raytheon.com