Systems Engineering Challenges for an Army Life Cycle Software Engineering Center

NDIA 8th Annual
CMMI Technology Conference
Denver, CO

17-20 November 2008

Dr. William A. Craig, Kerry M. Kennedy, Arthur B. Gosnell – AMRDEC SED
Robert E. Loesh – Software Engineering Sciences, Inc
Dr. Richard M. Wyskida – UAHuntsville

Approved for public release; distribution unlimited. Review completed by the AMRDEC Public Affairs Office 20 Oct 2008; FN3725.
SED Functions

• The Software Engineering Directorate located at Redstone Arsenal, AL is One of the U.S. Army Life Cycle Software Engineering Centers

• Provides Cradle to Grave Software Engineering Support to Army Customers

• Performs System/Software Maintenance, New Product Development, & Services (e.g., System/Software Acquisition, IV&V, IA)

• Required Domain Specific Knowledge/Functional Experience
 – Avionics
 – Complex Electronics (e.g., FPGA’s)
 – Software Safety/Airworthiness
 – Missile Seeker
 – Radar
 – BMC4I
 – System/Software Architecture
 – Ground Systems (Vtronics)
 – Information Assurance
Vision Statement

Be the Army's Center of Excellence for Systems and Software Engineering development and sustainment of aviation and missile systems in support of the Warfighter.

Business Goals

Provide customers with best value products in terms of quality, cost and schedule

Maintain a technically competent, well-trained and highly satisfied workforce

Be a leader in Systems Engineering technology and innovation
Process Improvement

Goals:
• Improve & mature the SED system development process, personnel, & technologies
• A process supporting SED Projects which contributes value to delivered products

Strategies:
• Develop a CMMI v1.2 compliant process
• Develop an Integrated Information Management System to facilitate process functionality, compliance, & institutionalization
• Migrate from “One Process Fits All” to a Process Definition Framework with Multiple Process Areas
AMRDEC SED’s Path to CMMI

PAST
- 500 People
- 25 Projects
- 15 Project Leads

PRESENT
- 1400 People
- 110 Projects
- 60 Project Leads

FUTURE
- 2000+ People
- 120+ Projects
- 75+ Project Leads

- **SEPH 4.0**
- **SEPH 5.0**
- **SEPH 5.1**
- **SEP 6.0**

- **CMM-2 1994**
- **CMM-3 1996**
- **CMM-4 2000**

- **CMMI (Dev) Focused on System Engineering 2003 - 2007**

- **2007+ Integrated Information Management System**

- **Software Capability Maturity Model (CMM)**

- **Better Quality - Predictability - Cost**

- **Software and Systems Engineering Capability Maturity Model Integrated (CMMI)**

- **“Continuous Model” Appraised Level 5 Using Information Portal, Dimensions® and Other Tools**

- **S/W, H/W, CE Development**
- **System/Software Maintenance**
- **System & SoS Test**

- **Complex Electronics**

- **Software Development & Maintenance**

- **H/W Development**

- **System Integration**

- **Multiple Process Areas**

- **Selected Process Areas**

- **Transition One Process at a Time**

- **Real Time Tailorable Process Set (RTT P S)**

- **S/W Development**

- **S/W Maintenance**

- **Hardware**

- **Complex Electronics**

- **Software**

- **Hardware**

- **Complex Electronics**
A phased process implementation approach would allow new SED process artifacts/tools/metrics to be introduced in mutually supportive blocks.
Software Engineering Directorate (SED)

• SED metrics team interviewed 36 of the Current SED Project Leads
• Included 76 SED Projects
• Provides a good understanding of the breadth and depth of SED
SED Project Size (Staff)

Project Size
by Staff Count

Number of People

Small: 141
Medium: 262
Large: 257
SED Project Size

Project Size

by Project Count

Number of Projects

Small: 54
Medium: 18
Large: 4
SED Projects by Work Domain

Work Domain

- Dev.: 45
- Svcs.: 27
- Acqu.: 1
- Rsrch.: 3
Technology Domain

<table>
<thead>
<tr>
<th>Domain</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>HW</td>
<td>9</td>
</tr>
<tr>
<td>SW</td>
<td>47</td>
</tr>
<tr>
<td>Sys</td>
<td>17</td>
</tr>
<tr>
<td>Research</td>
<td>3</td>
</tr>
</tbody>
</table>
SYSTEM ENGINEERING PROCESS FOCUS

SYSTEM ENGINEERING PROCESS FOCUS

System Definition

System Design

Systems Engineering Analysis

System (Test) Verification

 Sys. Integration Test

HW/SW/CE System Test

HW/SW/CE Subsys. Test

HW/SW/CE Integ. Test

HW/SW/CE Design

HW/SW/CE Arch. Design

HW/SW/CE Req. Analysis

Technical Review

Baseline

SSRs*

PDRs

Allocated

Functional

SFR

SRR

TRRs

System Requirements Review – SRR
System Functionality Review – SFR
Software Specification Review – SSR
Preliminary Design Review – PDR
Critical Design Review – CDR

Test Readiness Review – TRR

HW Fab/Code

Component/Unit Test

HW/SW/CE ENGINEERING/DEVELOPMENT
Scoping of CMMI Process to SED’s Mission & Systems Engineering (SE) Responsibilities

ISSUE: Project Engineering Responsibilities (Attributes) Vary:

- S/W Development Only
- S/W Development & Some H/W and/or CE Development and/or SE Responsibilities
- Project Leads May Tailor Procedures Based Upon their Project Engineering Attributes & Not be Fully CMMI Compliant
APPRAoch: SED CMMI Process Provides for Full S/W, H/W, CE Development & SE Responsibility (PLs Need to Tailor)

• At Project Startup the Project Lead (PL) Inputs from Menu the Project Engineering Attributes to the “STARTUP WIZARD”

• “STARTUP WIZARD” Down Selects from SED CMMI Process Definition & specifies the Required Procedures to be CMMI Compliant – Avoids Non-compliance Issue
Defining Process Standards

ISSUE: Army Programs Generally Follow Defense Acquisition University (DAU) Guidance, but Often Adopt One of the Industry Standards (often Development Contractor’s Choice), e.g.,

- IEEE 1220
- INCOSE
- EIA 632
- ISO/IEC 15528
APPROACH: SED’s CMMI Process is Compliant with DAU SE Guidance:

- Mapping Allows PL’s to Implement the CMMI Process & Meet Program Adopted SE Standards
SED Organizational Issues

ISSUE: Ability to Provide SE Staff/Capability
Challenge # 3 (Cont’d)

APPROACH: Develop SED SE Staff and Provide SE Organization

• Perform Existing Staff SE Knowledge, Skills, & Abilities Assessment
• DAU SE Training for SED Staff
• UAHuntsville SE PhD Program; Currently 12 Active SED Candidates
• Use SE Integrated Design Team
• Establish an SED SE Functional Organization to Perform SE Guidance
Challenge # 4

Minimize Impact on SED Existing CMMI Process/Procedures

ISSUE: Specify/Integrate SE Procedures, with Minimum Changes, into SED Existing CMMI Process
APPROACH: Augment Existing CMMI Procedures by Incorporating Unique SE Procedures

- Use Existing Support & Management Procedures with small Modifications; add only SE Unique Procedures (e.g., SEP, Systems Simulation)
- Use Existing Engineering Procedures with Modifications, e.g.,
 - Develop ICDs; Modify Existing IRS Procedure
 - Develop System Requirements; Modify SRS Procedure
- Incorporate Unique SE Procedures, e.g.,
 - System Trade Studies
 - Integrated Logistics Support Strategy
Accommodate Small Projects & Maintain SE CMMI Process Integrity

ISSUE: Small & Short Term Projects Cannot Afford to Implement all Procedures & Produce all Artifacts as Specified
APPRAOCH: Build on Existing CMMI “Workbook” Concept; Some Procedures & Artifacts can be Tailored & Combined to Reduce Inefficiencies & Overhead, e.g.,

- Project Plan may also include SDP items, SE Plan items, CM Procedures
- Peer Review Procedures may be Less Formal
- Design Documents May be Combined into Fewer Documents & Updated with Additional Detail & Modifications
Update Specific CMMI Metrics

ISSUE: Existing Software Development Metrics Require Modification & New SE Metrics need to be Specified

APPROACH:
Increase Scope of Existing Documentation Metrics to Support SE Documents, e.g.,
- Documentation Change Rate
- System Requirements Verification Metrics

Develop SE Unique Metrics, e.g.,
- System Reliability (e.g., MTBF)
- Maximum Time to Repair
Challenge # 7

Identify and Implement Automation at the SED Organizational Level

ISSUE: Define Automation that Guides Project Leads Through the Steps of Each Procedure, Captures Results & Artifacts, & Provides Assistance to Perform CM Procedures & Manage Baselines.
Challenge # 7 (Cont’d)

• Performed a Trade Study of Available Application Life Cycle Management Tools which Resulted in Selection of “Serena Dimensions”
• Peer Review Procedures: Review Meeting Attendance, Meeting Minutes Capture, Defects Capture, & Resolution Status
• Artifacts and Code Change Management
• Establishing & Archiving Baselines
• Support the Metrics Measurement Data Collection & Reporting
• Incrementally Incorporate new Tool Features (e.g., Requirements Management)
Ensure that SED Process has Grass Roots Input and Support

- **ISSUE:** Procedures and Automation Must Not Increase the Project Leads Effort to Learn/Implement:

 - Procedures and Automation Must Assist Project Leads in Process Implementation and Provide Useful Outputs
 - Must be “Easier to Use” than “Not to Use”
 - New and Modified Procedures Must be Adopted in Small Steps
 - Project Leads Must be Part of the Process Definition/Automation
Challenge # 8 (Cont’d)

- **APPROACH:** Use Senior Project Leads on the Process Improvement Teams (i.e., Appraisal, Implementation, Automation)

• Submit Procedures for Early Use and Critique as new Projects Startup (Continuous Process Improvement). “Grandfather” Existing Procedures for In-process Projects.

• Utilize “STARTUP WIZARD” to Down Select Essential Procedures for the Minimum Required Set to be CMMI Compliant.

• Provide SED Staff with Process Training and Mentoring Support

• Exploit Experience and Lessons Learned from Previous CMMI Definition and Implementation
The 8 Challenges Shall be Overcome

- Higher Management Endorses Approach
- Currently Educating 12 Selected SED Technical Staff in Systems Engineering Techniques in PhD Program at UAHuntsville
- Implementing Process Improvement Communications Plan
- Implementing new procedures gracefully (baby steps)
- Implementing Working Groups to Ensure Appropriate Focus (e.g., Systems Engineering, Project Management, Metrics)
- Stay in close touch with reality; listen to PLs comments & recommendations